Matching Items (2)
Filtering by

Clear all filters

157018-Thumbnail Image.png
Description
Body size plays a pervasive role in determining physiological and behavioral performance across animals. It is generally thought that smaller animals are limited in performance measures compared to larger animals; yet, the vast majority of animals on earth are small and evolutionary trends like miniaturization occur in every animal clade.

Body size plays a pervasive role in determining physiological and behavioral performance across animals. It is generally thought that smaller animals are limited in performance measures compared to larger animals; yet, the vast majority of animals on earth are small and evolutionary trends like miniaturization occur in every animal clade. Therefore, there must be some evolutionary advantages to being small and/or compensatory mechanisms that allow small animals to compete with larger species. In this dissertation I specifically explore the scaling of flight performance (flight metabolic rate, wing beat frequency, load-carrying capacity) and learning behaviors (visual differentiation visual Y-maze learning) across stingless bee species that vary by three orders of magnitude in body size. I also test whether eye morphology and calculated visual acuity match visual differentiation and learning abilities using honeybees and stingless bees. In order to determine what morphological and physiological factors contribute to scaling of these performance parameters I measure the scaling of head, thorax, and abdomen mass, wing size, brain size, and eye size. I find that small stingless bee species are not limited in visual learning compared to larger species, and even have some energetic advantages in flight. These insights are essential to understanding how small size evolved repeatedly in all animal clades and why it persists. Finally, I test flight performance across stingless bee species while varying temperature in accordance with thermal changes that are predicted with climate change. I find that thermal performance curves varied greatly among species, that smaller species conform closely to air temperature, and that larger bees may be better equipped to cope with rising temperatures due to more frequent exposure to high temperatures. This information may help us predict whether small or large species might fare better in future thermal climate conditions, and which body-size related traits might be expected to evolve.
ContributorsDuell, Meghan (Author) / Harrison, Jon F. (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Rutowski, Ronald (Committee member) / Wcislo, William (Committee member) / Conrad, Cheryl (Committee member) / Arizona State University (Publisher)
Created2018
147801-Thumbnail Image.png
Description

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover,

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover, our lab found that DEX administration in-utero leads to a sex-specific increase in stress-induced tachycardia in female, but not male offspring. This project seeks to expand on this preliminary finding of the heart by examining local effectors of activity from the sympathetic system (tyrosine hydroxylase and catechol-o-methyltransferase). Tyrosine hydroxylase was measured as it catalyzes the rate limiting step of norepinephrine synthesis while catechol-O- methyltransferase was studied as it catalyzes the degradation of norepinephrine. Acetylcholinesterase was used to measure parasympathetic activity as it catalyzes the degradation of the primary neurotransmitter of the parasympathetic nervous system, acetylcholine. Analyses of sympathetic as well as parasympathetic activity were done to determine influences of in-utero DEX exposure on autonomic regulation in adulthood. Pregnant rats were administered DEX (0.4 mg/kg, i.p.) or vehicle (20% w/v 2-hydroxypropyl ß- cyclodextran) at gestation days 18-21, with euthanasia of offspring occurring at around the time the offspring reached 13-15 weeks of age. Left ventricles and right atria were pulverized, processed and subjected to western blot analysis to determine expression of proteins of interest. Males exposed to DEX in-utero saw a decrease in tyrosine hydroxylase expression in left ventricle and right atrium when compared to vehicle control, a difference not seen with females. In addition, catechol-o-methyltransferase expression was increased in right atria from male, but not female rats. Acetylcholinesterase expression was reduced in the right atria of female, but not male rats. The present findings suggest reduced norepinephrine signaling in the heart of male, but not female DEX-exposed offspring. Given that we have previously found that female, but not male rats exhibit exaggerated stress-induced tachycardia, our current findings suggest that males possess a sex-specific compensatory mechanism allowing the heart to resist increased sympathetic signaling from the brain, one that females do not possess. The underlying mechanics of this proposed mechanism are unclear, and further investigation is needed in this subject to determine the significance of the findings from our study.

ContributorsSharma, Arpan (Author) / Conrad, Cheryl (Thesis director) / Hale, Taben (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05