Matching Items (2)
Filtering by

Clear all filters

147801-Thumbnail Image.png
Description

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover,

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover, our lab found that DEX administration in-utero leads to a sex-specific increase in stress-induced tachycardia in female, but not male offspring. This project seeks to expand on this preliminary finding of the heart by examining local effectors of activity from the sympathetic system (tyrosine hydroxylase and catechol-o-methyltransferase). Tyrosine hydroxylase was measured as it catalyzes the rate limiting step of norepinephrine synthesis while catechol-O- methyltransferase was studied as it catalyzes the degradation of norepinephrine. Acetylcholinesterase was used to measure parasympathetic activity as it catalyzes the degradation of the primary neurotransmitter of the parasympathetic nervous system, acetylcholine. Analyses of sympathetic as well as parasympathetic activity were done to determine influences of in-utero DEX exposure on autonomic regulation in adulthood. Pregnant rats were administered DEX (0.4 mg/kg, i.p.) or vehicle (20% w/v 2-hydroxypropyl ß- cyclodextran) at gestation days 18-21, with euthanasia of offspring occurring at around the time the offspring reached 13-15 weeks of age. Left ventricles and right atria were pulverized, processed and subjected to western blot analysis to determine expression of proteins of interest. Males exposed to DEX in-utero saw a decrease in tyrosine hydroxylase expression in left ventricle and right atrium when compared to vehicle control, a difference not seen with females. In addition, catechol-o-methyltransferase expression was increased in right atria from male, but not female rats. Acetylcholinesterase expression was reduced in the right atria of female, but not male rats. The present findings suggest reduced norepinephrine signaling in the heart of male, but not female DEX-exposed offspring. Given that we have previously found that female, but not male rats exhibit exaggerated stress-induced tachycardia, our current findings suggest that males possess a sex-specific compensatory mechanism allowing the heart to resist increased sympathetic signaling from the brain, one that females do not possess. The underlying mechanics of this proposed mechanism are unclear, and further investigation is needed in this subject to determine the significance of the findings from our study.

ContributorsSharma, Arpan (Author) / Conrad, Cheryl (Thesis director) / Hale, Taben (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168747-Thumbnail Image.png
Description
The capacity to track time in the seconds-to-minutes range, or interval timing, appears to be at least partially dependent on intact hippocampal (HPC) function. The current dissertation sought to dissociate timed responses, non-timed responses, and motivational aspects of behavior in order to propose a role of the HPC in specific

The capacity to track time in the seconds-to-minutes range, or interval timing, appears to be at least partially dependent on intact hippocampal (HPC) function. The current dissertation sought to dissociate timed responses, non-timed responses, and motivational aspects of behavior in order to propose a role of the HPC in specific timing sub-processes. In Chapter 2, effects of dorsal HPC (dHPC) lesions on temporal responding in a switch-timing task revealed a critical role of dHPC in the acquisition of interval timing criteria. Following dHPC lesions, the start time of responding was systemically shortened, in a manner that was enhanced and sustained when encoding a novel long interval, consistent with a memory-based account of dHPC function in timed responding. Chapter 3 investigated effects of chronic stress, which has been shown to reliably induce HPC dendritic retraction, on interval timing, utilizing response-initiated schedules of reinforcement, which facilitate deconvolution of timing and motivation. This revealed task-dependent effects on interval timing and motivation, where stress induced transient effects on motivation in a prospective timing task, but transient effects on the variability of timed responding in a retrospective timing task, consistent with an effect on memory function in interval timing. Chapter 4 sought to bring timed responding, motivation, and non-timed behaviors under stronger procedural control, through the implementation of a response-initiated timing-with-opportunity-cost task, in which a cost is imposed on temporal food-seeking by the presence of a concurrent source of probabilistic reinforcement. This arrangement garnered strong schedule control of behavior, and revealed individual-subject differences in the effects of reward devaluation, such that it affected motivation in some rats, but temporal responding in others. Using this methodology, Chapter 5 investigated initial temporal entrainment of behavior under pharmacological deactivation of dHPC and revealed its critical involvement in updating memory to new temporal contingencies. Together, data from this dissertation contrast with prior conclusions that the HPC is not involved in learning temporal criteria, and instead suggest that its function is indeed critical to encoding temporal intervals in memory.
ContributorsGupta, Tanya A. (Author) / Sanabria, Federico (Thesis advisor) / Conrad, Cheryl (Committee member) / Olive, Foster (Committee member) / McClure, Samuel (Committee member) / Arizona State University (Publisher)
Created2022