Matching Items (8)

147759-Thumbnail Image.png

Numerical Modeling of Hydrodynamic Flow Focusing in a Microfluidic Device for Time-Resolved Serial Crystallography

Description

Serial femtosecond crystallography (SFX) with an X-ray free-electron laser (XFEL) has enabled the determination of protein structures and protein reaction intermediates in millisecond to microsecond time resolutions. Mix-and-Inject crystallography (MISC)

Serial femtosecond crystallography (SFX) with an X-ray free-electron laser (XFEL) has enabled the determination of protein structures and protein reaction intermediates in millisecond to microsecond time resolutions. Mix-and-Inject crystallography (MISC) at XFELs enables fast mixing in the magnitude of milliseconds in order to achieve desired reaction time points. For these experiments, numerical simulations of a hydrodynamic flow mixer capable of fast mixing by diffusion has been developed using both COMSOL Multiphysics 5.6 and QuickerSims Computational Fluid Dynamics (CFD) Toolbox for MATLAB. These simulation programs were compared by calculations of mixing times and concentration flow profiles. Mixing times in the range of 1-10 ms were calculated in COMSOL under certain flow rate conditions whereas mixing times in the range of 6-15 ms were calculated with QuickerSims. From these mixing times, reaction intermediates can be varied from sub-millisecond to several hundred millisecond time points for a MISC experiment. Explanations for the discrepancies between the two models were attributed to variations in parameter definitions and meshing. Further analysis on the mixing characteristics were investigated by calculating an analytical solution to the convection-diffusion equation for fluid flow in a two-dimensional rectangular channel. The concentration profile along the width of the channel for the analytical solution was compared with the numerical solution obtained with COMSOL and QuickerSims. Upon comparison, it was determined that the diffusion coefficient may not be a significant factor for the disagreement between the two hydrodynamic flow models.

Contributors

Agent

Created

Date Created
  • 2021-05

158837-Thumbnail Image.png

Allosteric Modulation and Structural Determination of G-Protein Coupled Receptors

Description

G protein-coupled receptors (GPCRs) are known to be modulated by membrane cholesterol levels, but whether or not the effects are caused by specific receptor-cholesterol interactions or cholesterol’s general effects on

G protein-coupled receptors (GPCRs) are known to be modulated by membrane cholesterol levels, but whether or not the effects are caused by specific receptor-cholesterol interactions or cholesterol’s general effects on the membrane is not well-understood. Results from coarse-grained molecular dynamics (CGMD) simulations coupled and structural bioinformatics offer new insights into how cholesterol modulates GPCR function by showing cholesterol interactions with β2AR that agree with previously published data. Additionally, differential and specific cholesterol binding in the CCK receptor subfamily was observed while revealing a previously unreported Cholesterol Recognition Amino-acid Consensus (CRAC) sequence that is also conserved across 38% of class A GPCRs. Mutation of this conserved CRAC sequence of the β2AR affects cholesterol stabilization of the receptor in a lipid bilayer. Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) has proven highly successful for structure determination of challenging membrane proteins crystallized in lipidic cubic phase, however, as most techniques, it has limitations. Using an optimized SFX experimental setup in a helium atmosphere we determined the room temperature structure of the adenosine A2A receptor (A2AAR) at 2.0 Å resolution and compared it with previous A2AAR structures determined in vacuum and/or at cryogenic temperatures. Specifically, we demonstrated the capability of utilizing high XFEL beam transmissions, in conjunction with a high dynamic range detector, to collect high-resolution SFX data while reducing crystalline material consumption and shortening the collection time required for a complete data set.
The results of these studies provide a better understanding of receptor-cholesterol interactions that can contribute to novel and improved therapeutics for a variety of diseases. Furthermore, the experimental setups presented herein can be applied to future molecular dynamics and SFX applications for protein nanocrystal samples to aid in structure-based discovery efforts of therapeutic targets that are difficult to crystallize.

Contributors

Agent

Created

Date Created
  • 2020

155183-Thumbnail Image.png

Overcoming barriers in structural biology through method development of serial crystallography

Description

Serial crystallography (SX) is a relatively new structural biology technique that collects X-ray diffraction data from microcrystals via femtosecond pulses produced by an X-ray free electron

Serial crystallography (SX) is a relatively new structural biology technique that collects X-ray diffraction data from microcrystals via femtosecond pulses produced by an X-ray free electron laser (X-FEL) or by synchrotron radiation, allowing for challenging protein structures to be solved from microcrystals at room temperature. Because of the youth of this technique, method development is necessary for it to achieve its full potential.

Most serial crystallography experiments have relied on delivering sample in the mother liquor focused into a stream by compressed gas. This liquid stream moves at a fast rate, meaning that most of the valuable sample is wasted. For this reason, the liquid jet can require 10-100 milligrams of sample for a complete data set. Agarose has been developed as a slow moving microcrystal carrier to decrease sample consumption and waste. The agarose jet provides low background, no Debye-Sherrer rings, is compatible for sample delivery in vacuum environments, and is compatible with a wide variety of crystal systems. Additionally, poly(ethylene oxide) which is amenable for data collection in atmosphere has been developed for synchrotron experiments. Thus this work allows sample limited proteins of difficult to crystallize systems to be investigated by serial crystallography.

Time-resolved serial X-ray crystallography (TR-SX) studies have only been employed to study light-triggered reactions in photoactive systems. While these systems are very important, most proteins in Nature are not light-driven. However, fast mixing of two liquids, such as those containing enzyme protein crystals and substrates, immediately before being exposed to an X-ray beam would allow conformational changes and /or intermediates to be seen by diffraction. As a model, 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase (KDO8PS), has been developed for TR-SX. This enzyme initializes the first step of lipopolysaccharide synthesis by a net aldol condensation between arabinose-5-phosphate, phosphoenol pyruvate, and water. During this reaction, a short lived intermediate is formed and has been observed on a millisecond timescale using other methods. Thus KDO8PS is an ideal model protein for studying diffusion times into a crystal and short mixing times (<10 ms). For these experiments, microcrystals diffracting to high resolution have been developed and characterized.

Contributors

Agent

Created

Date Created
  • 2016

154069-Thumbnail Image.png

Sample injector fabrication and delivery method development for serial crystallography using synchrotrons and X-ray free electron lasers

Description

Sample delivery is an essential component in biological imaging using serial diffraction from X-ray Free Electron Lasers (XFEL) and synchrotrons. Recent developments have made possible the near-atomic resolution structure

Sample delivery is an essential component in biological imaging using serial diffraction from X-ray Free Electron Lasers (XFEL) and synchrotrons. Recent developments have made possible the near-atomic resolution structure determination of several important proteins, including one G protein-coupled receptor (GPCR) drug target, whose structure could not easily have been determined otherwise (Appendix A). In this thesis I describe new sample delivery developments that are paramount to advancing this field beyond what has been accomplished to date. Soft Lithography was used to implement sample conservation in the Gas Dynamic Virtual Nozzle (GDVN). A PDMS/glass composite microfluidic injector was created and given the capability of millisecond fluidic switching of a GDVN liquid jet within the divergent section of a 2D Laval-like GDVN nozzle, providing a means of collecting sample between the pulses of current XFELs. An oil/water droplet immersion jet was prototyped that suspends small sample droplets within an oil jet such that the sample droplet frequency may match the XFEL pulse repetition rate. A similar device was designed to use gas bubbles for synchronized “on/off” jet behavior and for active micromixing. 3D printing based on 2-Photon Polymerization (2PP) was used to directly fabricate reproducible GDVN injectors at high resolution, introducing the possibility of systematic nozzle research and highly complex GDVN injectors. Viscous sample delivery using the “LCP injector” was improved with a method for dealing with poorly extruding sample mediums when using full beam transmission from the Linac Coherent Light Source (LCLS), and a new viscous crystal-carrying medium was characterized for use in both vacuum and atmospheric environments: high molecular weight Polyethylene Glycol.

Contributors

Agent

Created

Date Created
  • 2015

154121-Thumbnail Image.png

Time-resolved crystallography using X-ray free-electron laser

Description

Photosystem II (PSII) is a large protein-cofactor complex. The first step in

photosynthesis involves the harvesting of light energy from the sun by the antenna (made

of pigments) of the PSII trans-membrane

Photosystem II (PSII) is a large protein-cofactor complex. The first step in

photosynthesis involves the harvesting of light energy from the sun by the antenna (made

of pigments) of the PSII trans-membrane complex. The harvested excitation energy is

transferred from the antenna complex to the reaction center of the PSII, which leads to a

light-driven charge separation event, from water to plastoquinone. This phenomenal

process has been producing the oxygen that maintains the oxygenic environment of our

planet for the past 2.5 billion years.

The oxygen molecule formation involves the light-driven extraction of 4 electrons

and protons from two water molecules through a multistep reaction, in which the Oxygen

Evolving Center (OEC) of PSII cycles through 5 different oxidation states, S0 to S4.

Unraveling the water-splitting mechanism remains as a grant challenge in the field of

photosynthesis research. This requires the development of an entirely new capability, the

ability to produce molecular movies. This dissertation advances a novel technique, Serial

Femtosecond X-ray crystallography (SFX), into a new realm whereby such time-resolved

molecular movies may be attained. The ultimate goal is to make a “molecular movie” that

reveals the dynamics of the water splitting mechanism using time-resolved SFX (TRSFX)

experiments and the uniquely enabling features of X-ray Free-Electron Laser

(XFEL) for the study of biological processes.

This thesis presents the development of SFX techniques, including development of

new methods to analyze millions of diffraction patterns (~100 terabytes of data per XFEL

experiment) with the goal of solving the X-ray structures in different transition states.

ii

The research comprises significant advancements to XFEL software packages (e.g.,

Cheetah and CrystFEL). Initially these programs could evaluate only 8-10% of all the

data acquired successfully. This research demonstrates that with manual optimizations,

the evaluation success rate was enhanced to 40-50%. These improvements have enabled

TR-SFX, for the first time, to examine the double excited state (S3) of PSII at 5.5-Å. This

breakthrough demonstrated the first indication of conformational changes between the

ground (S1) and the double-excited (S3) states, a result fully consistent with theoretical

predictions.

The power of the TR-SFX technique was further demonstrated with proof-of principle

experiments on Photoactive Yellow Protein (PYP) micro-crystals that high

temporal (10-ns) and spatial (1.5-Å) resolution structures could be achieved.

In summary, this dissertation research heralds the development of the TR-SFX

technique, protocols, and associated data analysis methods that will usher into practice a

new era in structural biology for the recording of ‘molecular movies’ of any biomolecular

process.

Contributors

Agent

Created

Date Created
  • 2015

153166-Thumbnail Image.png

Methods and instrumentation of sample injection for XFEL experiments

Description

ABSTRACT

X-Ray crystallography and NMR are two major ways of achieving atomic

resolution of structure determination for macro biomolecules such as proteins. Recently, new developments of hard X-ray pulsed free electron laser

ABSTRACT

X-Ray crystallography and NMR are two major ways of achieving atomic

resolution of structure determination for macro biomolecules such as proteins. Recently, new developments of hard X-ray pulsed free electron laser XFEL opened up new possibilities to break the dilemma of radiation dose and spatial resolution in diffraction imaging by outrunning radiation damage with ultra high brightness femtosecond X-ray pulses, which is so short in time that the pulse terminates before atomic motion starts. A variety of experimental techniques for structure determination of macro biomolecules is now available including imaging of protein nanocrystals, single particles such as viruses, pump-probe experiments for time-resolved nanocrystallography, and snapshot wide- angle x-ray scattering (WAXS) from molecules in solution. However, due to the nature of the "diffract-then-destroy" process, each protein crystal would be destroyed once

probed. Hence a new sample delivery system is required to replenish the target crystal at a high rate. In this dissertation, the sample delivery systems for the application of XFELs to biomolecular imaging will be discussed and the severe challenges related to the delivering of macroscopic protein crystal in a stable controllable way with minimum waste of sample and maximum hit rate will be tackled with several different development of injector designs and approaches. New developments of the sample delivery system such as liquid mixing jet also opens up new experimental methods which gives opportunities to study of the chemical dynamics in biomolecules in a molecular structural level. The design and characterization of the system will be discussed along with future possible developments and applications. Finally, LCP injector will be discussed which is critical for the success in various applications.

Contributors

Agent

Created

Date Created
  • 2014

150022-Thumbnail Image.png

Femtosecond x-ray nanocrystallography of membrane proteins

Description

Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein

Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein structures have been determined to date, often due to difficulties associated with the growth of sufficiently large and well-ordered crystals. This work has been focused on showing the first proof of concept for using membrane protein nanocrystals and microcrystals for high-resolution structure determination. Upon determining that crystals of the membrane protein Photosystem I, which is the largest and most complex membrane protein crystallized to date, exist with only a hundred unit cells with sizes of less than 200 nm on an edge, work was done to develop a technique that could exploit the growth of the Photosystem I nanocrystals and microcrystals. Femtosecond X-ray protein nanocrystallography was developed for use at the first high-energy X-ray free electron laser, the LCLS at SLAC National Accelerator Laboratory, in which a liquid jet would bring fully hydrated Photosystem I nanocrystals into the interaction region of the pulsed X-ray source. Diffraction patterns were recorded from millions of individual PSI nanocrystals and data from thousands of different, randomly oriented crystallites were integrated using Monte Carlo integration of the peak intensities. The short pulses ( 70 fs) provided by the LCLS allowed the possibility to collect the diffraction data before the onset of radiation damage, exploiting the diffract-before-destroy principle. At the initial experiments at the AMO beamline using 6.9- Å wavelength, Bragg peaks were recorded to 8.5- Å resolution, and an electron-density map was determined that did not show any effects of X-ray-induced radiation damage. Recently, femtosecond X-ray protein nanocrystallography experiments were done at the CXI beamline of the LCLS using 1.3- Å wavelength, and Bragg reflections were recorded to 3- Å resolution; the data are currently being processed. Many additional techniques still need to be developed to explore the femtosecond nanocrystallography technique for experimental phasing and time-resolved X-ray crystallography experiments. The first proof-of-principle results for the femtosecond nanocrystallography technique indicate the incredible potential of the technique to offer a new route to the structure determination of membrane proteins.

Contributors

Agent

Created

Date Created
  • 2011

156550-Thumbnail Image.png

Life In Motion: Visualizing Biomacromolecules By Time-Resolved Serial Femtosecond Crystallography

Description

Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This

Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of molecules in nano- or microcrystals and then using femtosecond X-ray laser pulses produced by an X-ray free electron laser to collect near-instantaneous data on the crystal. A full data set can be collected by merging a sufficient number of these patterns together and multiple data sets can be collected at different points along the reaction pathway by manipulating the delay time between reaction initiation and the probing X-rays. In this way, these ‘snapshot’ structures can be viewed in series to make a molecular movie, allowing for atomic visualization of a molecule in action and, thereby, a structural basis for the mechanism and function of a given biomacromolecule.

This dissertation presents results towards this end, including the successful implementations of the first diffusive mixing chemoactivated reactions and ultrafast dynamics in the femtosecond regime. The primary focus is on photosynthetic membrane proteins and enzymatic drug targets, in pursuit of strategies for sustainable energy and medical advancement by gaining understanding of the structure-function relationships evolved in nature. In particular, photosystem I, photosystem II, the complex of photosystem I and ferredoxin, and 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase are reported on, from purification and isolation, to crystallogenesis, to experimental design and data collection and subsequent interpretation of results and novel insights gained.

Contributors

Agent

Created

Date Created
  • 2018