Matching Items (2)

147706-Thumbnail Image.png

Qualitative Determination of Exopolymeric Substances in Particle-Associated Bacteria from the Sargasso Sea

Description

The biological carbon pump acts as part of the global carbon cycle through the photosynthetic fixation of inorganic carbon into dissolved and particulate organic carbon by phytoplankton. Previously, the biological carbon pump was attributed to large aggregates and zooplankton fecal

The biological carbon pump acts as part of the global carbon cycle through the photosynthetic fixation of inorganic carbon into dissolved and particulate organic carbon by phytoplankton. Previously, the biological carbon pump was attributed to large aggregates and zooplankton fecal pellets since their size and density results in faster sinking rates, efficiently exporting organic carbon to deeper depths in the ocean. However, recent studies have indicated that small cells, known as picoplankton, contribute significantly to the formation of sinking particles. The presence of exopolymeric substances (EPS), among them sticky transparent exopolymeric particles (TEP) and proteinaceous coomassie stainable particles (CSP), serve as influential factors of export flux and aggregation. The presence of heterotrophic bacteria can also affect aggregation and sinking velocity, as seen in previous studies, and is likely attributed to their EPS and TEP production. The staining and visualization of TEP and CSP allow for the qualitative determination of these types of EPS from bacteria isolated from sinking particles collected with particle interceptor traps at various depths in the Sargasso Sea. I study the presence of TEP and CSP in particle-associated bacteria. Cultures of picocyanobacteria, consisting of xenic Synechococcus and axenic Prochlorococcus, were used to establish positive and negative controls for stained isolate analysis. Marinobacter adhaerens served as a tertiary control for an axenic culture that stains positive for TEP. I chose six isolates of bacteria isolated from sinking particles to be stained and visualized to test for the secretion of TEP and CSP. Four of the isolates stained positive for both TEP and CSP, including Pseudoalteromonas sp., Erythrobacter sp., and Marinobacter sp., while one isolate, Micrococcus sp., stained positive only for TEP, and the last isolate, another Marinobacter sp., stained positive for only CSP. These results are important in understanding the role of plankton organisms in the formation of sinking particles.

Contributors

Agent

Created

Date Created
2021-05

149451-Thumbnail Image.png

Seasonal and interannual variability of the Sargasso Sea plankton community

Description

Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities

Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the euphotic zone, triggering a surge in primary productivity in the form of a spring phytoplankton bloom. Although the hydrographic trends of this "boom and bust" cycle have been well studied for decades, community composition and its seasonal and annual variability remains an integral subject of research. It is hypothesized here that proportions of different phytoplankton and protistan taxa vary dramatically between seasons and years, and that picoplankton represent an important component of this community and contributor to carbon in the surface ocean. Monthly samples from the Bermuda Atlantic Time-series Study (BATS) site were analyzed by epifluorescence microscopy, which permits classification by morphology, size, and trophic type. Epifluorescence counts were supplemented with flow cytometric quantification of Synechococcus, Prochlorococcus, and autotrophic pico- and nanoeukaryotes. Results from this study indicate Synechococcus and Prochlorococcus, prymnesiophytes, and hetero- and mixotrophic nano- and dinoflagellates were the major players in the BATS region plankton community. Ciliates, cryptophytes, diatoms, unidentified phototrophs, and other taxa represented rarer groups. Both flow cytometry and epifluorescence microscopy revealed Synechococcus to be most prevalent during the spring bloom. Prymnesiophytes likewise displayed distinct seasonality, with the highest concentrations again being noted during the bloom. Heterotrophic nano- and dinoflagellates, however, were most common in fall and winter. Mixotrophic dinoflagellates, while less abundant than their heterotrophic counterparts, displayed similar seasonality. A key finding of this study was the interannual variability revealed between the two years. While most taxa were more abundant in the first year, prymnesiophytes experienced much greater abundance in the second year bloom. Analyses of integrated carbon revealed further stark contrasts between the two years, both in terms of total carbon and the contributions of different groups. Total integrated carbon varied widely in the first study year but displayed less fluctuation after June 2009, and values were noticeably reduced in the second year.

Contributors

Agent

Created

Date Created
2010