Matching Items (2)

Filtering by

Clear all filters

147645-Thumbnail Image.png

Using Logistic Regression to Predict Stock Trends Based on Bag-of-Words Representations of News Article Headlines

Description

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict the trends of stock prices based on the Dow Jones Industrial Average. The results showed that a tri-gram bag led to a 49% trend accuracy, a 1% increase when compared to the single-gram representation’s accuracy of 48%.

Contributors

Agent

Created

Date Created
2021-05

153801-Thumbnail Image.png

Heard it through the grapevine: traceability, intelligence cohort, and collaborative hazard intelligence

Description

Designing a hazard intelligence platform enables public agencies to organize diversity and manage complexity in collaborative partnerships. To maintain the integrity of the platform while preserving the prosocial ethos, understanding the dynamics of “non-regulatory supplements” to central governance is crucial.

Designing a hazard intelligence platform enables public agencies to organize diversity and manage complexity in collaborative partnerships. To maintain the integrity of the platform while preserving the prosocial ethos, understanding the dynamics of “non-regulatory supplements” to central governance is crucial. In conceptualization, social responsiveness is shaped by communicative actions, in which coordination is attained through negotiated agreements by way of the evaluation of validity claims. The dynamic processes involve information processing and knowledge sharing. The access and the use of collaborative intelligence can be examined by notions of traceability and intelligence cohort. Empirical evidence indicates that social traceability is statistical significant and positively associated with the improvement of collaborative performance. Moreover, social traceability positively contributes to the efficacy of technical traceability, but not vice versa. Furthermore, technical traceability significantly contributes to both moderate and high performance improvement; while social traceability is only significant for moderate performance improvement. Therefore, the social effect is limited and contingent. The results further suggest strategic considerations. Social significance: social traceability is the fundamental consideration to high cohort performance. Cocktail therapy: high cohort performance involves an integrative strategy with high social traceability and high technical traceability. Servant leadership: public agencies should exercise limited authority and perform a supporting role in the provision of appropriate technical traceability, while actively promoting social traceability in the system.

Contributors

Agent

Created

Date Created
2015