Matching Items (2)
Filtering by

Clear all filters

148084-Thumbnail Image.png
Description

Medicolegal forensic entomology is the study of insects to aid with legal investigations (Gemmellaro, 2017). Insect evidence can be used to provide information such as the post-mortem interval (PMI). Blow flies are especially useful as these insects are primary colonizers, quickly arriving at a corpse (Malainey & Anderson, 2020). The

Medicolegal forensic entomology is the study of insects to aid with legal investigations (Gemmellaro, 2017). Insect evidence can be used to provide information such as the post-mortem interval (PMI). Blow flies are especially useful as these insects are primary colonizers, quickly arriving at a corpse (Malainey & Anderson, 2020). The age of blow flies found at a scene is used to calculate the PMI. Blow fly age can be estimated using weather data as these insects are poikilothermic (Okpara, 2018). Morphological analysis also can be used to estimate age; however, it is more difficult with pupal samples as the pupae exterior does not change significantly as development progresses (Bala & Sharma, 2016). Gene regulation analysis can estimate the age of samples. MicroRNAs are short noncoding RNA that regulate gene expression (Cannell et al., 2008). Here, we aim to catalog miRNAs expressed during the development of three forensically relevant blow fly species preserved in several storage conditions. Results demonstrated that various miRNA sequences were differentially expressed across pupation. Expression of miR92b increased during mid pupation, aga-miR-92b expression increased during early pupation, and bantam, miR957, and dana-bantam-RA expression increased during late pupation. These results suggest that microRNA can be used to estimate the age of pupal samples as miRNA expression changes throughout pupation. Future work could develop a statistical model to accurately determine age using miRNA expression patterns.

ContributorsHerrera-Quiroz, Demian David (Author) / Parrott, Jonathan (Thesis director) / Weidner, Lauren (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147635-Thumbnail Image.png
Description

In this experiment, the viability of gunshot residue (GSR) was examined. This was done through the very rarely researched intersection of forensic firearms analysis and forensic entomology. The question being resolved is if GSR can reliably be detected from secondary evidence transfer of GSR laden carrion onto flies and their

In this experiment, the viability of gunshot residue (GSR) was examined. This was done through the very rarely researched intersection of forensic firearms analysis and forensic entomology. The question being resolved is if GSR can reliably be detected from secondary evidence transfer of GSR laden carrion onto flies and their larvae. While it is know that secondary and tertiary GSR evidence can be transferred by way of handshakes, no such research has been conducted on flies or their pupae. Findings indicated varying levels of detection of GSR on evidence. GSR could reliably be detected on fly bodies and their legs, but not on their pupae. This research is significant as it provides previously unknown information on this line of research and provides the groundwork for further research on this topic in the future.

ContributorsGill, Brendan J (Author) / Parrott, Jonathan (Thesis director) / Weidner, Lauren (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05