Matching Items (4)
Filtering by

Clear all filters

153386-Thumbnail Image.png
Description
The space environment comprises cosmic ray particles, heavy ions and high energy electrons and protons. Microelectronic circuits used in space applications such as satellites and space stations are prone to upsets induced by these particles. With transistor dimensions shrinking due to continued scaling, terrestrial integrated circuits are also increasingly susceptible

The space environment comprises cosmic ray particles, heavy ions and high energy electrons and protons. Microelectronic circuits used in space applications such as satellites and space stations are prone to upsets induced by these particles. With transistor dimensions shrinking due to continued scaling, terrestrial integrated circuits are also increasingly susceptible to radiation upsets. Hence radiation hardening is a requirement for microelectronic circuits used in both space and terrestrial applications.

This work begins by exploring the different radiation hardened flip-flops that have been proposed in the literature and classifies them based on the different hardening techniques.

A reduced power delay element for the temporal hardening of sequential digital circuits is presented. The delay element single event transient tolerance is demonstrated by simulations using it in a radiation hardened by design master slave flip-flop (FF). Using the proposed delay element saves up to 25% total FF power at 50% activity factor. The delay element is used in the implementation of an 8-bit, 8051 designed in the TSMC 130 nm bulk CMOS.

A single impinging ionizing radiation particle is increasingly likely to upset multiple circuit nodes and produce logic transients that contribute to the soft error rate in most modern scaled process technologies. The design of flip-flops is made more difficult with increasing multi-node charge collection, which requires that charge storage and other sensitive nodes be separated so that one impinging radiation particle does not affect redundant nodes simultaneously. We describe a correct-by-construction design methodology to determine a-priori which hardened FF nodes must be separated, as well as a general interleaving scheme to achieve this separation. We apply the methodology to radiation hardened flip-flops and demonstrate optimal circuit physical organization for protection against multi-node charge collection.

Finally, the methodology is utilized to provide critical node separation for a new hardened flip-flop design that reduces the power and area by 31% and 35% respectively compared to a temporal FF with similar hardness. The hardness is verified and compared to other published designs via the proposed systematic simulation approach that comprehends multiple node charge collection and tests resiliency to upsets at all internal and input nodes. Comparison of the hardness, as measured by estimated upset cross-section, is made to other published designs. Additionally, the importance of specific circuit design aspects to achieving hardness is shown.
ContributorsShambhulingaiah, Sandeep (Author) / Clark, Lawrence (Thesis advisor) / Holbert, Keith E. (Committee member) / Seo, Jae sun (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2015
147605-Thumbnail Image.png
Description

This thesis details the design process of a variable gain amplifier (VGA) based circuit which maintains a consistent output power over a wide range of input power signals. This effect is achieved by using power detection circuitry to adjust the gain of the VGA based on the current input power

This thesis details the design process of a variable gain amplifier (VGA) based circuit which maintains a consistent output power over a wide range of input power signals. This effect is achieved by using power detection circuitry to adjust the gain of the VGA based on the current input power so that it is amplifier to a set power level. The paper details the theory behind this solutions as well as the design process which includes both simulations and physical testing of the actual circuit. It also analyses results of these tests and gives suggestions as to what could be done to further improve the design. The VGA based constant output power solution was designed as a section of a larger circuit which was developed as part of a senior capstone project, which is also briefly described in the paper.

ContributorsMeyer, Sheldon (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165040-Thumbnail Image.png
Description
The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in

The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in high-field MRI, and are on the same scale as the human body at a static magnetic field strength of 3 T (128 MHz). As a result of these shorter wavelengths, standing wave effects are produced in the MR bore where the patient is located. These standing waves generate bright and dark spots in the resulting MR image, which correspond to irregular regions of high and low clarity. Coil loading is also an inevitable byproduct of subject positioning inside the bore, which decreases the signal that the region of interest (ROI) receives for the same input power. Several remedies have been proposed in the literature to remedy the standing wave effect, including the placement of high permittivity dielectric pads (HPDPs) near the ROI. Despite the success of HPDPs at smoothing out image brightness, these pads are traditionally bulky and take up a large spatial volume inside the already small MR bore. In recent years, artificial periodic structures known as metamaterials have been designed to exhibit specific electromagnetic effects when placed inside the bore. Although typically thinner than HPDPs, many metamaterials in the literature are rigid and cannot conform to the shape of the patient, and some are still too bulky for practical use in clinical settings. The well-known antenna engineering concept of fractalization, or the introduction of self-similar patterns, may be introduced to the metamaterial to display a specific resonance curve as well as increase the metamaterial’s intrinsic capacitance. Proposed in this paper is a flexible fractal-inspired metamaterial for application in 3 T MR head imaging. To demonstrate the advantages of this flexibility, two different metamaterial configurations are compared to determine which produces a higher localized signal-to-noise ratio (SNR) and average signal measured in the image: in the first configuration, the metamaterial is kept rigid underneath a human head phantom to represent metamaterials in the literature (single-sided placement); and in the second, the metamaterial is wrapped around the phantom to utilize its flexibility (double-sided placement). The double-sided metamaterial setup was found to produce an increase in normalized SNR of over 5% increase in five of six chosen ROIs when compared to no metamaterial use and showed a 10.14% increase in the total average signal compared to the single-sided configuration.
ContributorsSokol, Samantha (Author) / Sohn, Sung-Min (Thesis director) / Allee, David (Committee member) / Jones, Anne (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05