Matching Items (2)
Filtering by

Clear all filters

147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
161744-Thumbnail Image.png
Description
This thesis presents three novel studies. The first two works focus on galvanically isolated chip-to-chip communication, and the third research studies class-E pulse-width modulated power amplifiers. First, a common-mode resilient CMOS (complementary metal-oxide-semiconductor) galvanically isolated Radio Frequency (RF) chip-to-chip communication system is presented utilizing laterally resonant coupled circuits to increases

This thesis presents three novel studies. The first two works focus on galvanically isolated chip-to-chip communication, and the third research studies class-E pulse-width modulated power amplifiers. First, a common-mode resilient CMOS (complementary metal-oxide-semiconductor) galvanically isolated Radio Frequency (RF) chip-to-chip communication system is presented utilizing laterally resonant coupled circuits to increases maximum common-mode transient immunity and the isolation capability of galvanic isolators in a low-cost standard CMOS solution beyond the limits provided from the vertical coupling. The design provides the highest reported CMTI (common-mode transient immunity) of more than 600 kV/µs, 5 kVpk isolation, and a chip area of 0.95 mm2. In the second work, a bi-directional ultra-wideband transformer-coupled galvanic isolator is reported for the first time. The proposed design merges the functionality of two isolated channels into one magnetically coupled communication, enabling up to 50% form-factor and assembly cost reduction while achieving a simultaneously robust and state-of-art performance. This work achieves simultaneous robust, wideband, and energy-efficient performance of 300 Mb/s data rate, isolation of 7.8 kVrms, and power consumption and propagation delay of 200 pJ/b and 5 ns, respectively, in only 0.8 mm2 area. The third works studies class-E pulse-width modulated (PWM) Power amplifiers (PAs). For the first time, it presents a design technique to significantly extend the Power back-off (PBO) dynamic range of PWM PAs over the prior art. A proof-of-concept watt-level class-E PA is designed using a GaN HEMT and exhibits more than 6dB dynamic range for a 50 to 30 percent duty cycle variation. Moreover, in this work, the effects of non-idealities on performance and design of class-E power amplifiers for variable supply on and pulse-width operations are characterized and studied, including the effect of non-linear parasitic capacitances and its exploitation for enhancement of average efficiency and self-heating effects in class-E SMPAs using a new over dry-ice measurement technique was presented for this first time. The non-ideality study allows for capturing a full view of the design requirement and considerations of class-E power amplifiers and provides a window to the phenomena that lead to a mismatch between the ideal and actual performance of class-E power amplifiers and their root causes.
ContributorsJavidahmadabadi, Mahdi (Author) / Kitchen, Jennifer N (Thesis advisor) / Aberle, James (Committee member) / Bakkaloglu, Bertan (Committee member) / Burton, Richard (Committee member) / Arizona State University (Publisher)
Created2021