Matching Items (3)
Filtering by
- All Subjects: Lithium
- Creators: Karwat, Darshawn
- Creators: Leeson, Van
- Creators: Melton, John
- Creators: Peng, Xihong
- Member of: Theses and Dissertations
- Member of: Barrett, The Honors College Thesis/Creative Project Collection
Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for
future energy storage devices. Electrode materials that alloy with Li, such as Si, are one
of the most promising alternatives for Li-ion battery anodes due to their high capacities.
Tetrel (Si, Ge, Sn) clathrates are a class of host-guest crystalline structures in which
Tetrel elements form a cage framework and encapsulate metal guest atoms. These
structures can form with defects such as framework/guest atom substitutions and
vacancies which result in a wide design space for tuning materials properties. The goal of
this work is to establish structure property relationships within the context of Li-ion
battery anode applications. The type I Ba 8 Al y Ge 46-y clathrates are investigated for their
electrochemical reactions with Li and show high capacities indicative of alloying
reactions. DFT calculations show that Li insertion into the framework vacancies is
favorable, but the migration barriers are too high for room temperature diffusion. Then,
guest free type I clathrates are investigated for their Li and Na migration barriers. The
results show that Li migration in the clathrate frameworks have low energy barriers (0.1-
0.4 eV) which suggest the possibility for room temperature diffusion. Then, the guest
free, type II Si clathrate (Na 1 Si 136 ) is synthesized and reversible Li insertion into the type
II Si clathrate structure is demonstrated. Based on the reasonable capacity (230 mAh/g),
low reaction voltage (0.30 V) and low volume expansion (0.21 %), the Si clathrate could
be a promising insertion anode for Li-ion batteries. Next, synchrotron X-ray
measurements and pair distribution function (PDF) analysis are used to investigate the
lithiation pathways of Ba 8 Ge 43 , Ba 8 Al 16 Ge 30 , Ba 8 Ga 15 Sn 31 and Na 0.3 Si 136 . The results
show that the Ba-clathrates undergo amorphous phase transformations which is distinct
from their elemental analogues (Ge, Sn) which feature crystalline lithiation pathways.
Based on the high capacities and solid-solution reaction mechanism, guest-filled
clathrates could be promising precursors to form alloying anodes with novel
electrochemical properties. Finally, several high temperature (300-550 °C)
electrochemical synthesis methods for Na-Si and Na-Ge clathrates are demonstrated in a
cell using a Na β’’-alumina solid electrolyte.

The project goal is aimed to research the most pressing issues facing the lithium supply chain today. It then is tasked with charting a path into the future through strategic recommendations that will help reduce risk, and make a greener, cleaner, and more ethical supply chain.

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.