Matching Items (4)
Filtering by

Clear all filters

150831-Thumbnail Image.png
Description
With a recent shift to a more environmentally conscious society, low-carbon and non-carbon producing energy production methods are being investigated and applied all over the world. Of these methods, fuel cells show great potential for clean energy production. A fuel cell is an electrochemical energy conversion device which directly converts

With a recent shift to a more environmentally conscious society, low-carbon and non-carbon producing energy production methods are being investigated and applied all over the world. Of these methods, fuel cells show great potential for clean energy production. A fuel cell is an electrochemical energy conversion device which directly converts chemical energy into electrical energy. Proton exchange membrane fuel cells (PEMFCs) are a highly researched energy source for automotive and stationary power applications. In order to produce the power required to meet Department of Energy requirements, platinum (Pt) must be used as a catalyst material in PEMFCs. Platinum, however, is very expensive and extensive research is being conducted to develop ways to reduce the amount of platinum used in PEMFCs. In the current study, three catalyst synthesis techniques were investigated and evaluated on their effectiveness to produce platinum-on copper (Pt@Cu) core-shell nanocatalyst on multi-walled carbon nanotube (MWCNT) support material. These three methods were direct deposition method, two-phase surfactant method, and single-phase surfactant method, in which direct deposition did not use a surfactant for particle size control and the surfactant methods did. The catalyst materials synthesized were evaluated by visual inspection and fuel cell performance. Samples which produced high fuel cell power output were evaluated using transmission electron microscopy (TEM) imaging. After evaluation, it was concluded that the direct deposition technique was effective in synthesizing Pt@Cu core-shell nanocatalyst on MWCNTs support when a rinsing process was used before adding platinum. The peak power density achieved by the rinsed core-shell catalyst was 618 mW.cm-2 , 13 percent greater than that of commercial platinum-carbon (Pt/C) catalyst. Transmission electron microscopy imaging revealed the core-shell catalyst contained Pt shells and platinum-copper alloy cores. Rinsing with deionized (DI) water was shown to be a crucial step in core-shell catalyst deposition as it reduced the number of platinum colloids on the carbon nanotube surface. After evaluation, it was concluded that the two-phase surfactant and single-phase surfactant synthesis methods were not effective at producing core-shell nanocatalyst with the parameters investigated.
ContributorsAdame, Anthony (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2012
149660-Thumbnail Image.png
Description
Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several

Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several important limitations which must be overcome before commercial viability can be achieved. Active areas of research into making them commercially viable include reducing the cost, size and weight of fuel cells while also increasing their durability and performance. A growing and important part of this research involves the computer modeling of fuel cells. High quality computer modeling and simulation of fuel cells can help speed up the discovery of optimized fuel cell components. Computer modeling can also help improve fundamental understanding of the mechanisms and reactions that take place within the fuel cell. The work presented in this thesis describes a procedure for utilizing computer modeling to create high quality fuel cell simulations using Ansys Fluent 12.1. Methods for creating computer aided design (CAD) models of fuel cells are discussed. Detailed simulation parameters are described and emphasis is placed on establishing convergence criteria which are essential for producing consistent results. A mesh sensitivity study of the catalyst and membrane layers is presented showing the importance of adhering to strictly defined convergence criteria. A study of iteration sensitivity of the simulation at low and high current densities is performed which demonstrates the variance in the rate of convergence and the absolute difference between solution values derived at low numbers of iterations and high numbers of iterations.
ContributorsArvay, Adam (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Liang, Yong (Committee member) / Subach, James (Committee member) / Arizona State University (Publisher)
Created2011
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for future energy storage devices. Electrode materials that alloy with Li, such as Si, are one of the most promising alternatives for Li-ion battery anodes due to their high capacities. Tetrel (Si,

Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for future energy storage devices. Electrode materials that alloy with Li, such as Si, are one of the most promising alternatives for Li-ion battery anodes due to their high capacities. Tetrel (Si, Ge, Sn) clathrates are a class of host-guest crystalline structures in which Tetrel elements form a cage framework and encapsulate metal guest atoms. These structures can form with defects such as framework/guest atom substitutions and vacancies which result in a wide design space for tuning materials properties. The goal of this work is to establish structure property relationships within the context of Li-ion battery anode applications. The type I Ba 8 Al y Ge 46-y clathrates are investigated for their electrochemical reactions with Li and show high capacities indicative of alloying reactions. DFT calculations show that Li insertion into the framework vacancies is favorable, but the migration barriers are too high for room temperature diffusion. Then, guest free type I clathrates are investigated for their Li and Na migration barriers. The results show that Li migration in the clathrate frameworks have low energy barriers (0.1- 0.4 eV) which suggest the possibility for room temperature diffusion. Then, the guest free, type II Si clathrate (Na 1 Si 136 ) is synthesized and reversible Li insertion into the type II Si clathrate structure is demonstrated. Based on the reasonable capacity (230 mAh/g), low reaction voltage (0.30 V) and low volume expansion (0.21 %), the Si clathrate could be a promising insertion anode for Li-ion batteries. Next, synchrotron X-ray measurements and pair distribution function (PDF) analysis are used to investigate the lithiation pathways of Ba 8 Ge 43 , Ba 8 Al 16 Ge 30 , Ba 8 Ga 15 Sn 31 and Na 0.3 Si 136 . The results show that the Ba-clathrates undergo amorphous phase transformations which is distinct from their elemental analogues (Ge, Sn) which feature crystalline lithiation pathways. Based on the high capacities and solid-solution reaction mechanism, guest-filled clathrates could be promising precursors to form alloying anodes with novel electrochemical properties. Finally, several high temperature (300-550 °C) electrochemical synthesis methods for Na-Si and Na-Ge clathrates are demonstrated in a cell using a Na β’’-alumina solid electrolyte.
ContributorsDopilka, Andrew (Author) / Chan, Candace K (Thesis advisor) / Zhuang, Houlong (Committee member) / Peng, Xihong (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2021