Matching Items (6)
Filtering by

Clear all filters

151351-Thumbnail Image.png
Description
Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion

Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion cracking of face-centered cubic alloys. Corrosion of such alloys often results in the formation of a brittle nanoporous layer which we hypothesize serves to nucleate a crack that owing to dynamic effects penetrates into the un-dealloyed parent phase alloy. Thus, since there is essentially a purely mechanical component of cracking, stress corrosion crack propagation rates can be significantly larger than that predicted from electrochemical parameters. The main objective of this work is to examine and test this hypothesis under conditions relevant to stress corrosion cracking. Silver-gold alloys serve as a model system for this study since hydrogen effects can be neglected on a thermodynamic basis, which allows us to focus on a single cracking mechanism. In order to study various aspects of this problem, the dynamic fracture properties of monolithic nanoporous gold (NPG) were examined in air and under electrochemical conditions relevant to stress corrosion cracking. The detailed processes associated with the crack injection phenomenon were also examined by forming dealloyed nanoporous layers of prescribed properties on un-dealloyed parent phase structures and measuring crack penetration distances. Dynamic fracture in monolithic NPG and in crack injection experiments was examined using high-speed (106 frames s-1) digital photography. The tunable set of experimental parameters included the NPG length scale (20-40 nm), thickness of the dealloyed layer (10-3000 nm) and the electrochemical potential (0.5-1.5 V). The results of crack injection experiments were characterized using the dual-beam focused ion beam/scanning electron microscopy. Together these tools allow us to very accurately examine the detailed structure and composition of dealloyed grain boundaries and compare crack injection distances to the depth of dealloying. The results of this work should provide a basis for new mathematical modeling of dealloying induced stress corrosion cracking while providing a sound physical basis for the design of new alloys that may not be susceptible to this form of cracking. Additionally, the obtained results should be of broad interest to researchers interested in the fracture properties of nano-structured materials. The findings will open up new avenues of research apart from any implications the study may have for stress corrosion cracking.
ContributorsSun, Shaofeng (Author) / Sieradzki, Karl (Thesis advisor) / Jiang, Hanqing (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2012
153180-Thumbnail Image.png
Description
This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy.

This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy. This high speed crack owing to its kinetic energy can penetrate beyond the corroded layer into the parent phase and thus effectively reducing strength of the parent phase. Silver-gold alloys provide an ideal system to study this effect, as hydrogen effect can be ruled out on thermodynamic basis. During corrosion of the silver-gold alloy, the less noble metal i.e. silver is removed from the system leaving behind a nanoporous gold (NPG) layer. In the case of polycrystalline material, this corrosion process proceeds deeper along the grain boundary than the matrix grain. All of the cracks with apparent penetration beyond the corroded (dealloyed) layer are intergranular. Our aim was to study the crack penetration depth along the grain boundary to ascertain whether the penetration occurs past the grain-boundary dealloyed depth. EDS and imaging in high-resolution aberration corrected scanning transmission electron microscope (STEM) and atom probe tomography (APT) have been used to evaluate the grain boundary corrosion depth.

The mechanical properties of monolithic NPG are also studied. The motivation behind this is two-fold. The crack injection depth depends on the speed of the crack formed in the nanoporous layer, which in turn depends on the mechanical properties of the NPG. Also NPG has potential applications in actuation, sensing and catalysis. The measured value of the Young's modulus of NPG with 40 nm ligament size and 28% density was ~ 2.5 GPa and the Poisson's ratio was ~ 0.20. The fracture stress was observed to be ~ 11-13 MPa. There was no significant change observed between these mechanical properties on oxidation of NPG at 1.4 V. The fracture toughness value for the NPG was ~ 10 J/m2. Also dynamic fracture tests showed that the NPG is capable of supporting crack velocities ~ 100 - 180 m/s.
ContributorsBadwe, Nilesh (Author) / Sieradzki, Karl (Thesis advisor) / Peralta, Pedro (Committee member) / Oswald, Jay (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2014
151233-Thumbnail Image.png
Description
The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal

The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal particles is presented. The stability of Pt particles was studied by in situ electrochemical scanning tunneling microscopy (ECSTM). It is shown that small Pt particles dissolve at a lower potential than the corresponding bulk material. For the alloy particles, two size ranges of AuAg particles, ∼4 nm and ∼45 nm in diameter, were synthesized by co–reduction of the salts of Au and Ag from an aqueous phase. The alloy particles were dealloyed at a series of potential by chronoamperometry in acid, and the resulting morphology and composition were characterized by electron microscopy, energy dispersive X–ray spectroscopy (EDX). In the case of the smaller particles, only surface dealloying occurred yielding a core–shell structure. A porous structure was observed for the larger particles when the potential was larger than a critical value that was within 50 mV of the thermodynamic prediction.
ContributorsLi, Xiaoqian (Author) / Sieradzki, Karl (Thesis advisor) / Crozier, Peter (Committee member) / Buttry, Daniel (Committee member) / Friesen, Cody (Committee member) / Arizona State University (Publisher)
Created2012
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
161284-Thumbnail Image.png
Description
Lithium conducting garnets in the family of Li7La3Zr2O12 (LLZO) are promising lithium conductors for solid-state batteries, due to their high ionic conductivity, thermal stability, and electrochemical stability with metallic lithium. Despite these advantages, LLZO requires a large energy input to synthesize and process. Generally, LLZO is synthesized using solid-state reaction

Lithium conducting garnets in the family of Li7La3Zr2O12 (LLZO) are promising lithium conductors for solid-state batteries, due to their high ionic conductivity, thermal stability, and electrochemical stability with metallic lithium. Despite these advantages, LLZO requires a large energy input to synthesize and process. Generally, LLZO is synthesized using solid-state reaction (SSR) from oxide precursors, requiring high reaction temperatures (900-1000 °C) and producing powder with large particle sizes, necessitating high energy milling to improve sinterability. In this dissertation, two classes of advanced synthesis methods – sol-gel polymer-combustion and molten salt synthesis (MSS) – are employed to obtain LLZO submicron powders at lower temperatures. In the first case, nanopowders of LLZO are obtained in a few hours at 700 °C via a novel polymer combustion process, which can be sintered to dense electrolytes possessing ionic conductivity up to 0.67 mS cm-1 at room temperature. However, the limited throughput of this combustion process motivated the use of molten salt synthesis, wherein a salt mixture is used as a high temperature solvent, allowing faster interdiffusion of atomic species than solid-state reactions. A eutectic mixture of LiCl-KCl allows formation of submicrometer undoped, Al-doped, Ga-doped, and Ta-doped LLZO at 900 °C in 4 h, with total ionic conductivities between 0.23-0.46 mS cm-1. By using a highly basic molten salt medium, Ta-doped LLZO (LLZTO) can be obtained at temperatures as low as 550 °C, with an ionic conductivity of 0.61 mS cm-1. The formation temperature can be further reduced by using Ta-doped, La-excess pyrochlore-type lanthanum zirconate (La2Zr2O7, LZO) as a quasi-single-source precursor, which convert to LLZTO as low as 400 °C upon addition of a Li-source. Further, doped pyrochlores can be blended with a Li-source and directly sintered to a relative density up to 94.7% with high conductivity (0.53 mS cm-1). Finally, a propensity for compositional variation in LLZTO powders and sintered ceramics was observed and for the first time explored in detail. By comparing LLZTO obtained from combustion, MSS, and SSR, a correlation between increased elemental inhomogeneity and reduced ionic conductivity is observed. Implications for garnet-based solid-state batteries and strategies to mitigate elemental inhomogeneity are discussed.
ContributorsWeller, Jon Mark (Author) / Chan, Candace K (Thesis advisor) / Crozier, Peter (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2021
Description
Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for future energy storage devices. Electrode materials that alloy with Li, such as Si, are one of the most promising alternatives for Li-ion battery anodes due to their high capacities. Tetrel (Si,

Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for future energy storage devices. Electrode materials that alloy with Li, such as Si, are one of the most promising alternatives for Li-ion battery anodes due to their high capacities. Tetrel (Si, Ge, Sn) clathrates are a class of host-guest crystalline structures in which Tetrel elements form a cage framework and encapsulate metal guest atoms. These structures can form with defects such as framework/guest atom substitutions and vacancies which result in a wide design space for tuning materials properties. The goal of this work is to establish structure property relationships within the context of Li-ion battery anode applications. The type I Ba 8 Al y Ge 46-y clathrates are investigated for their electrochemical reactions with Li and show high capacities indicative of alloying reactions. DFT calculations show that Li insertion into the framework vacancies is favorable, but the migration barriers are too high for room temperature diffusion. Then, guest free type I clathrates are investigated for their Li and Na migration barriers. The results show that Li migration in the clathrate frameworks have low energy barriers (0.1- 0.4 eV) which suggest the possibility for room temperature diffusion. Then, the guest free, type II Si clathrate (Na 1 Si 136 ) is synthesized and reversible Li insertion into the type II Si clathrate structure is demonstrated. Based on the reasonable capacity (230 mAh/g), low reaction voltage (0.30 V) and low volume expansion (0.21 %), the Si clathrate could be a promising insertion anode for Li-ion batteries. Next, synchrotron X-ray measurements and pair distribution function (PDF) analysis are used to investigate the lithiation pathways of Ba 8 Ge 43 , Ba 8 Al 16 Ge 30 , Ba 8 Ga 15 Sn 31 and Na 0.3 Si 136 . The results show that the Ba-clathrates undergo amorphous phase transformations which is distinct from their elemental analogues (Ge, Sn) which feature crystalline lithiation pathways. Based on the high capacities and solid-solution reaction mechanism, guest-filled clathrates could be promising precursors to form alloying anodes with novel electrochemical properties. Finally, several high temperature (300-550 °C) electrochemical synthesis methods for Na-Si and Na-Ge clathrates are demonstrated in a cell using a Na β’’-alumina solid electrolyte.
ContributorsDopilka, Andrew (Author) / Chan, Candace K (Thesis advisor) / Zhuang, Houlong (Committee member) / Peng, Xihong (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2021