Matching Items (2)
Filtering by

Clear all filters

152865-Thumbnail Image.png
Description
As global energy demand has dramatically increased and traditional fossil fuels will be depleted in the foreseeable future, clean and unlimited renewable energies are recognized as the future global energy challenge solution. Today, the power grid in U.S. is building more and more renewable energies like wind and solar, while

As global energy demand has dramatically increased and traditional fossil fuels will be depleted in the foreseeable future, clean and unlimited renewable energies are recognized as the future global energy challenge solution. Today, the power grid in U.S. is building more and more renewable energies like wind and solar, while the electric power system faces new challenges from rapid growing percentage of wind and solar. Unlike combustion generators, intermittency and uncertainty are the inherent features of wind and solar. These features bring a big challenge to the stability of modern electric power grid, especially for a small scale power grid with wind and solar. In order to deal with the intermittency and uncertainty of wind and solar, energy storage systems are considered as one solution to mitigate the fluctuation of wind and solar by smoothing their power outputs. For many different types of energy storage systems, this thesis studied the operation of battery energy storage systems (BESS) in power systems and analyzed the benefits of the BESS. Unlike many researchers assuming fixed utilization patterns for BESS and calculating the benefits, this thesis found the BESS utilization patterns and benefits through an investment planning model. Furthermore, a cost is given for utilizing BESS and to find the best way of operating BESS rather than set an upper bound and a lower bound for BESS energy levels. Two planning models are proposed in this thesis and preliminary conclusions are derived from simulation results. This work is organized as below: chapter 1 briefly introduces the background of this research; chapter 2 gives an overview of previous related work in this area; the main work of this thesis is put in chapter 3 and chapter 4 contains the generic BESS model and the investment planning model; the following chapter 5 includes the simulation and results analysis of this research and chapter 6 provides the conclusions from chapter 5.
ContributorsDai, Daihong (Author) / Hedman, Kory W (Thesis advisor) / Zhang, Muhong (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05