Matching Items (3)

Filtering by

Clear all filters

Planning for Cooler Cities: A Framework to Prioritize Green Infrastructure to Mitigate High Temperatures in Urban Landscapes

Description

Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in

Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in urban areas while delivering diverse additional benefits such as pollution reduction and biodiversity habitat. Although the greatest thermal benefits of UGI are achieved in climates with hot, dry summers, there is comparatively little information available for land managers to determine an appropriate strategy for UGI implementation under these climatic conditions. We present a framework for prioritisation and selection of UGI for cooling. The framework is supported by a review of the scientific literature examining the relationships between urban geometry, UGI and temperature mitigation which we used to develop guidelines for UGI implementation that maximises urban surface temperature cooling. We focus particularly on quantifying the cooling benefits of four types of UGI: green open spaces (primarily public parks), shade trees, green roofs, and vertical greening systems (green walls and facades) and demonstrate how the framework can be applied using a case study from Melbourne, Australia.

Contributors

Created

Date Created
2014-11-11

Impact of Urban Form and Design on Mid-Afternoon Microclimate in Phoenix Local Climate Zones

Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

Contributors

Agent

Created

Date Created
2013-12-01

Residential Land Use, the Urban Heat Island, and Water Use in Phoenix: A Path Analysis

Description

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines these feedback relationships with the help of a path model applied to spatially disaggregated data from Phoenix, Arizona. The empirical evidence from the observations in Phoenix suggests the following: (1) impervious surfaces contribute to increased residential water use by exacerbating UHI; (2) larger lots containing pools and mesic vegetation increase water demand by reducing diurnal temperature difference; and (3) smart design of urban environments needs to go beyond simplistic water body- and vegetation-based solutions for mitigating uncomfortably high temperatures and consider interactions between surface materials, land use, UHI, and water use.

Contributors

Agent

Created

Date Created
2010-07-08