Matching Items (2)
Filtering by

Clear all filters

141378-Thumbnail Image.png
Description

Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in urban areas while delivering diverse additional benefits such as pollution

Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in urban areas while delivering diverse additional benefits such as pollution reduction and biodiversity habitat. Although the greatest thermal benefits of UGI are achieved in climates with hot, dry summers, there is comparatively little information available for land managers to determine an appropriate strategy for UGI implementation under these climatic conditions. We present a framework for prioritisation and selection of UGI for cooling. The framework is supported by a review of the scientific literature examining the relationships between urban geometry, UGI and temperature mitigation which we used to develop guidelines for UGI implementation that maximises urban surface temperature cooling. We focus particularly on quantifying the cooling benefits of four types of UGI: green open spaces (primarily public parks), shade trees, green roofs, and vertical greening systems (green walls and facades) and demonstrate how the framework can be applied using a case study from Melbourne, Australia.

ContributorsNorton, Briony A. (Author) / Coutts, Andrew M. (Author) / Livesley, Stephen J. (Author) / Harris, Richard J. (Author) / Hunter, Annie M. (Author) / Williams, Nicholas S.G. (Author)
Created2014-11-11
141397-Thumbnail Image.png
Description

We conducted microclimate simulations in ENVI-Met 3.1 to evaluate the impact of vegetation in lowering temperatures during an extreme heat event in an urban core neighborhood park in Phoenix, Arizona. We predicted air and surface temperatures under two different vegetation regimes: existing conditions representative of Phoenix urban core neighborhoods, and

We conducted microclimate simulations in ENVI-Met 3.1 to evaluate the impact of vegetation in lowering temperatures during an extreme heat event in an urban core neighborhood park in Phoenix, Arizona. We predicted air and surface temperatures under two different vegetation regimes: existing conditions representative of Phoenix urban core neighborhoods, and a proposed scenario informed by principles of landscape design and architecture and Urban Heat Island mitigation strategies. We found significant potential air and surface temperature reductions between representative and proposed vegetation scenarios:

1. A Park Cool Island effect that extended to non-vegetated surfaces.
2. A net cooling of air underneath or around canopied vegetation ranging from 0.9 °C to 1.9 °C during the warmest time of the day.
3. Potential reductions in surface temperatures from 0.8 °C to 8.4 °C in areas underneath or around vegetation.

ContributorsDeclet-Barreto, Juan (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Chow, Winston, 1951- (Author) / Harlan, Sharon L. (Author)
Created2012-12-21