Matching Items (2)

Filtering by

Clear all filters

Planning for Cooler Cities: A Framework to Prioritize Green Infrastructure to Mitigate High Temperatures in Urban Landscapes

Description

Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in

Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in urban areas while delivering diverse additional benefits such as pollution reduction and biodiversity habitat. Although the greatest thermal benefits of UGI are achieved in climates with hot, dry summers, there is comparatively little information available for land managers to determine an appropriate strategy for UGI implementation under these climatic conditions. We present a framework for prioritisation and selection of UGI for cooling. The framework is supported by a review of the scientific literature examining the relationships between urban geometry, UGI and temperature mitigation which we used to develop guidelines for UGI implementation that maximises urban surface temperature cooling. We focus particularly on quantifying the cooling benefits of four types of UGI: green open spaces (primarily public parks), shade trees, green roofs, and vertical greening systems (green walls and facades) and demonstrate how the framework can be applied using a case study from Melbourne, Australia.

Contributors

Created

Date Created
2014-11-11

152680-Thumbnail Image.png

Optimizing the effect of vegetation for pedestrian thermal comfort and urban heat island mitigation in a hot arid urban environment

Description

Rapid urbanization in Phoenix, Arizona has increased the nighttime temperature by 5°C (9 °F), and the average daily temperatures by 3.1°C (5.6 °F) (Baker et al 2002). On the macro scale, the energy balance of urban surface paving materials is

Rapid urbanization in Phoenix, Arizona has increased the nighttime temperature by 5°C (9 °F), and the average daily temperatures by 3.1°C (5.6 °F) (Baker et al 2002). On the macro scale, the energy balance of urban surface paving materials is the main contributor to the phenomenon of the Urban Heat Island effect (UHI). On the micro scale, it results in a negative effect on the pedestrian thermal comfort environment. In their efforts to revitalize Downtown Phoenix, pedestrian thermal comfort improvements became one of the main aims for City planners. There has been an effort in reformulating City zoning standards and building codes with the goal of developing a pedestrian friendly civic environment. Much of the literature dealing with mitigating UHI effects recommends extensive tree planting as the chief strategy for reducing the UHI and improving outdoor human thermal comfort. On the pedestrian scale, vegetation plays a significant role in modifying the microclimate by providing shade and aiding the human thermal comfort via evapotranspiration. However, while the extensive tree canopy is beneficial in providing daytime shade for pedestrians, it may reduce the pavement surfaces' sky-view factor during the night, thereby reducing the rate of nighttime radiation to the sky and trapping the heat gained within the urban materials. This study strives to extend the understanding, and optimize the recommendations for the use of landscape in the urban context of Phoenix, Arizona for effectiveness in both improving the human thermal comfort and in mitigating the urban heat island effect.

Contributors

Agent

Created

Date Created
2014