Matching Items (2)
Filtering by

Clear all filters

151866-Thumbnail Image.png
Description
This dissertation investigates spatial and temporal changes in land cover and plant species distributions on Cyprus in the past, present and future (1973-2070). Landsat image analysis supports inference of land cover changes following the political division of the island of Cyprus in 1974. Urban growth in Nicosia, Larnaka and Limasol,

This dissertation investigates spatial and temporal changes in land cover and plant species distributions on Cyprus in the past, present and future (1973-2070). Landsat image analysis supports inference of land cover changes following the political division of the island of Cyprus in 1974. Urban growth in Nicosia, Larnaka and Limasol, as well as increased development along the southern coastline, is clearly evident between 1973 and 2011. Forests of the Troodos and Kyrenia Ranges remain relatively stable, with transitions occurring most frequently between agricultural land covers and shrub/herbaceous land covers. Vegetation models were constructed for twenty-two plant species of Cyprus using Maxent to predict potentially suitable areas of occurrence. Modern vegetation models were constructed from presence-only data collected by field surveys conducted between 2008 and 2011. These models provide a baseline for the assessment of potential species distributions under two climate change scenarios (A1b and A2) for the years 2030, 2050, and 2070. Climate change in Cyprus is likely to influence habitat availability, particularly for high elevation species as the relatively low elevation mountain ranges and small latitudinal range prevent species from shifting to areas of suitable environmental conditions. The loss of suitable habitat for some species may allow the introduction of non-native plant species or the expansion of generalists currently excluded from these areas. Results from future projections indicate the loss of suitable areas for most species by the year 2030 under both climate regimes and all four endemic species (Cedrus brevifolia, Helianthemum obtusifolium, Pterocephalus multiflorus, and Quercus alnifolia) are predicted to lose all suitable environments as soon as 2030. As striking exceptions Prunus dulcis (almond), Ficus carica (fig), Punica granatum (pomegranate) and Olea europaea (olive), which occur as both wild varieties and orchard cultigens, will expand under both scenarios. Land cover and species distribution maps are evaluated in concert to create a more detailed interpretation of the Cypriot landscape and to discuss the potential implications of climate change for land cover and plant species distributions.
ContributorsRidder, Elizabeth (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe W (Committee member) / Hirt, Paul W (Committee member) / Arizona State University (Publisher)
Created2013
152680-Thumbnail Image.png
Description
Rapid urbanization in Phoenix, Arizona has increased the nighttime temperature by 5°C (9 °F), and the average daily temperatures by 3.1°C (5.6 °F) (Baker et al 2002). On the macro scale, the energy balance of urban surface paving materials is the main contributor to the phenomenon of the Urban Heat

Rapid urbanization in Phoenix, Arizona has increased the nighttime temperature by 5°C (9 °F), and the average daily temperatures by 3.1°C (5.6 °F) (Baker et al 2002). On the macro scale, the energy balance of urban surface paving materials is the main contributor to the phenomenon of the Urban Heat Island effect (UHI). On the micro scale, it results in a negative effect on the pedestrian thermal comfort environment. In their efforts to revitalize Downtown Phoenix, pedestrian thermal comfort improvements became one of the main aims for City planners. There has been an effort in reformulating City zoning standards and building codes with the goal of developing a pedestrian friendly civic environment. Much of the literature dealing with mitigating UHI effects recommends extensive tree planting as the chief strategy for reducing the UHI and improving outdoor human thermal comfort. On the pedestrian scale, vegetation plays a significant role in modifying the microclimate by providing shade and aiding the human thermal comfort via evapotranspiration. However, while the extensive tree canopy is beneficial in providing daytime shade for pedestrians, it may reduce the pavement surfaces' sky-view factor during the night, thereby reducing the rate of nighttime radiation to the sky and trapping the heat gained within the urban materials. This study strives to extend the understanding, and optimize the recommendations for the use of landscape in the urban context of Phoenix, Arizona for effectiveness in both improving the human thermal comfort and in mitigating the urban heat island effect.
ContributorsRosheidat, Akram (Author) / Bryan, Harvey (Thesis advisor) / Lee, Taewoo (Committee member) / Chalfoun, Nader (Committee member) / Arizona State University (Publisher)
Created2014