Matching Items (2)
Filtering by

Clear all filters

149135-Thumbnail Image.png
Description

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior to disturbance" and that "restoring altered, damaged, O f destroyed lakes, rivers, and wetlands is a high-priority task." Effective restoration must be based on a clear definition of the value of riverine resources to society; on scientific studies that document ecosystem status and provide an understanding of ecosystem processes and resource interactions; on scientific studies that predict, mea- sure, and monitor the effectiveness of restoration techniques; and on engineering and economic studies that evaluate societal costs and benefits of restoration.

In the case of some large rivers, restoration is not a self-evident goal. Indeed, restoration may be impossible; a more feasible goal may be rehabilitation of some ecosystem components and processes in parts of the river (Gore and Shields 1995, Kondolfand Wilcock 1996, Stanford et al. 1996). In other cases, the appropriate decision may be to do nothing. The decision to manipulate ecosystem processes and components involves not only a scientific judgment that a restored or rehabilitated condition is achievable, but also a value judgment that this condition is more desirable than the status quo. These judgments involve prioritizing different river resources, and they should be based on extensive and continuing public debate.

In this article, we examine the appropriate role of science in determining whether or not to restore or rehabilitate the Colorado River in the Grand Canyon by summarizing studies carried out by numerous agencies, universities, and consulting firms since 1983. This reach of the Colorado extends 425 km between Glen Canyon Dam and Lake Mead reservoir (Figure 1). Efforts to manipulate ecosystem processes and components in the Grand Canyon have received widespread public attention, such as the 1996 controlled flood released from Glen Canyon Dam and the proposal to drain Lake Powell reservoir.

ContributorsSchmidt, John C. (Author) / Webb, Robert H. (Author) / Valdez, Richard A. (Author) / Marzolf, G. Richard (Author) / Stevens, Lawrence E. (Author)
Created1998-09
141381-Thumbnail Image.png
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2013-12-01