Matching Items (15)
152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
ContributorsMiller, Steven (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
151977-Thumbnail Image.png
Description
Global climate change (GCC) is among the most important issues of the 21st century. Adaptation to and mitigation of climate change are some of the salient local and regional challenges scientists, decision makers, and the general public face today and will be in the near future. However, designed adaptation and

Global climate change (GCC) is among the most important issues of the 21st century. Adaptation to and mitigation of climate change are some of the salient local and regional challenges scientists, decision makers, and the general public face today and will be in the near future. However, designed adaptation and mitigation strategies do not guarantee success in coping with global climate change. Despite the robust and convincing body for anthropogenic global climate change research and science there is still a significant gap between the recommendations provided by the scientific community and the actual actions by the public and policy makers. In order to design, implement, and generate sufficient public support for policies and planning interventions at the national and international level, it is necessary to have a good understanding of the public's perceptions regarding GCC. Based on survey research in nine countries, the purpose of this study is two-fold: First, to understand the nature of public perceptions of global climate change in different countries; and secondly to identi-fy perception factors which have a significant impact on the public's willingness to sup-port GCC policies or commit to behavioral changes to reduce GHG emissions. Factors such as trust in GCC information which need to be considered in future climate change communication efforts are also dealt with in this dissertation. This study has identified several aspects that need to be considered in future communication programs. GCC is characterized by high uncertainties, unfamiliar risks, and other characteristics of hazards which make personal connections, responsibility and engagement difficult. Communication efforts need to acknowledge these obstacles, build up trust and motivate the public to be more engaged in reducing GCC by emphasizing the multiple benefits of many policies outside of just reducing GCC. Levels of skepticism among the public towards the reality of GCC as well as the trustworthiness and sufficien-cy of the scientific findings varies by country. Thus, communicators need to be aware of their audience in order to decide how educational their program needs to be.
ContributorsHagen, Bjoern (Author) / Pijawka, David (Thesis advisor) / Brazel, Anthony (Committee member) / Chhetri, Netra (Committee member) / Guhathakurta, Subhrajit (Committee member) / Arizona State University (Publisher)
Created2013
155106-Thumbnail Image.png
Description
Increasingly, wildfires are threatening communities, forcing evacuations, damaging property, and causing loss of life. This is in part due to a century of wildfire policy and an influx of people moving to the wildland urban interface (WUI). National programs have identified and promoted effective wildfire mitigation actions to

Increasingly, wildfires are threatening communities, forcing evacuations, damaging property, and causing loss of life. This is in part due to a century of wildfire policy and an influx of people moving to the wildland urban interface (WUI). National programs have identified and promoted effective wildfire mitigation actions to reduce wildfire risk; yet, many homeowners do not perform these actions. Based on previous literature and using the theory of planned behavior (TPB), this study proposes an integrated wildfire mitigation behavioral model to assess and identify the factors that influence homeowners’ wildfire mitigation behaviors. Specifically, the study tests the validity of the theory of planned behavior as a foundational model in exploring wildfire mitigation behaviors, develops and empirically tests a wildfire mitigation behavioral model, and explores the role of homeowner associations (HOA) on wildfire mitigation behaviors. Structural equation modeling was used on data collected from homeowners with property in the WUI in Prescott, Arizona. Results suggest TPB provides an acceptable model in describing homeowner wildfire mitigation behavior. For HOA residents, attitudes toward wildfire mitigation behaviors play an important role in predicting intentions to perform these behaviors. Additionally, perceived constraints directly influenced actual mitigation actions. For non-HOA residents, subjective norms influenced intentions to mitigate. Implications for research and local wildfire mitigation programs and policy are discussed.
ContributorsSteffey, Eric Clifford (Author) / Budruk, Megha (Thesis advisor) / Vogt, Christine (Committee member) / Virden, Randy (Committee member) / Larson, Kelli (Committee member) / Arizona State University (Publisher)
Created2016
141439-Thumbnail Image.png
Description

The urban heat island effect is especially significant in semi-arid climates, generating a myriad of problems for large urban areas. Green space can mitigate warming, providing cooling benefits important to reducing energy consumption and improving human health. The arrangement of green space to reap the full potential of cooling benefits

The urban heat island effect is especially significant in semi-arid climates, generating a myriad of problems for large urban areas. Green space can mitigate warming, providing cooling benefits important to reducing energy consumption and improving human health. The arrangement of green space to reap the full potential of cooling benefits is a challenge, especially considering the diurnal variations of urban heat island effects. Surprisingly, methods that support the strategic placement of green space in the context of urban heat island are lacking. Integrating geographic information systems, remote sensing, spatial statistics and spatial optimization, we developed a framework to identify the best locations and configuration of new green space with respect to cooling benefits. The developed multi-objective model is applied to evaluate the diurnal cooling trade-offs in Phoenix, Arizona. As a result of optimal green space placement, significant cooling potentials can be achieved. A reduction of land surface temperature of approximately 1–2 °C locally and 0.5 °C regionally can be achieved by the addition of new green space. 96% of potential day and night cooling benefits can be achieved through simultaneous consideration. The results also demonstrate that clustered green space enhances local cooling because of the agglomeration effect; whereas, dispersed patterns lead to greater overall regional cooling. The optimization based framework can effectively inform planning decisions with regard to green space allocation to best ameliorate excessive heat.

ContributorsZhang, Yujia (Author) / Murray, Alan T. (Author) / Turner, II, B.L. (Author)
Created2017-07-31
141440-Thumbnail Image.png
Description

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the wall temperature and building energy consumption. At a regional scale, various pavement types were also found to have a limited cooling effect on land surface temperature and 2-m air temperature for metropolitan Phoenix. In the context of global climate change, the effect of pavement was evaluated in terms of the equivalent CO2 emission. Equivalent CO2 emission offset by reflective pavements in urban canyons was only about 13.9e46.6% of that without building canopies, depending on the canyon geometry. This study revealed the importance of building-environment thermal interactions in determining thermal conditions inside the urban canopy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Dylla, Heather (Author)
Created2016-08-22
141371-Thumbnail Image.png
Description

We use the Northeast US Urban Climate Archipelago as a case study to explore three key limitations of planning and policy initiatives to mitigate extreme urban heat. These limitations are: (1) a lack of understanding of spatial considerations—for example, how nearby urban areas interact, affecting, and being affected by, implementation

We use the Northeast US Urban Climate Archipelago as a case study to explore three key limitations of planning and policy initiatives to mitigate extreme urban heat. These limitations are: (1) a lack of understanding of spatial considerations—for example, how nearby urban areas interact, affecting, and being affected by, implementation of such policies; (2) an emphasis on air temperature reduction that neglects assessments of other important meteorological parameters, such as humidity, mixing heights, and urban wind fields; and (3) too narrow of a temporal focus—either time of day, season, or current vs. future climates. Additionally, the absence of a direct policy/planning linkage between heat mitigation goals and actual human health outcomes, in general, leads to solutions that only indirectly address the underlying problems. These issues are explored through several related atmospheric modeling case studies that reveal the complexities of designing effective urban heat mitigation strategies. We conclude with recommendations regarding how policy-makers can optimize the performance of their urban heat mitigation policies and programs. This optimization starts with a thorough understanding of the actual end-point goals of these policies, and concludes with the careful integration of scientific knowledge into the development of location-specific strategies that recognize and address the limitations discussed herein.

ContributorsSailor, David (Author) / Shepherd, Marshall (Author) / Sheridan, Scott (Author) / Stone, Brian (Author) / Laurence, Kalkstein (Author) / Russell, Armistead (Author) / Vargo, Jason (Author) / Andersen, Theresa (Author)
Created2016-10-12
141328-Thumbnail Image.png
Description

This study examined the scope and components of mitigation assessments in a first effort to develop some guidelines for conducting mitigation evaluations. Using the Mitigation Evaluations Survey (MES) we developed for this research, we surveyed 266 psychologists about the characteristics and content of mitigation evaluations. A high percentage of participants

This study examined the scope and components of mitigation assessments in a first effort to develop some guidelines for conducting mitigation evaluations. Using the Mitigation Evaluations Survey (MES) we developed for this research, we surveyed 266 psychologists about the characteristics and content of mitigation evaluations. A high percentage of participants endorsed each of the 14 content areas presented in the MES as essential or recommended for inclusion in mitigation evaluations. However, when the participants were given a hypothetical open-ended referral question regarding a mitigation evaluation, fewer participants included all 14 content areas in their responses. This discrepancy as well as information regarding the qualifications and expertise of the participants is discussed.

ContributorsBarnett, Michelle E. (Author) / Brodsky, Stanley L. (Author) / Neal, Tess M.S. (Author)
Created2011
141380-Thumbnail Image.png
Description

Urban Heat Island (UHI) has significant impacts on the buildings energy consumption and outdoor air quality (OAQ). Various approaches, including observation and simulation techniques, have been proposed to understand the causes of UHI formation and to find the corresponding mitigation strategies. However, the causes of UHI are not the same

Urban Heat Island (UHI) has significant impacts on the buildings energy consumption and outdoor air quality (OAQ). Various approaches, including observation and simulation techniques, have been proposed to understand the causes of UHI formation and to find the corresponding mitigation strategies. However, the causes of UHI are not the same in different climates or city features. Thus, general conclusion cannot be made based on limited monitoring data.

With recent progress in computational tools, simulation methods have been used to study UHI. These approaches, however, are also not able to cover all the phenomena that simultaneously contribute to the formation of UHI. The shortcomings are mostly attributed to the weakness of the theories and computational cost.

This paper presents a review of the techniques used to study UHI. The abilities and limitations of each approach for the investigation of UHI mitigation and prediction are discussed. Treatment of important parameters including latent, sensible, storage, and anthropogenic heat in addition to treatment of radiation, effect of trees and pond, and boundary condition to simulate UHI is also presented. Finally, this paper discusses the application of integration approach as a future opportunity.

ContributorsMirzaei, Parham A. (Author) / Haghighat, Fariborz (Author)
Created2010-04-11
141382-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Raymond (Author)
Created2015
141391-Thumbnail Image.png
Description

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This growth has manifested itself as a cause of various impacts including elevated urban temperatures in comparison to rural sites known as the Urban Heat Island (UHI) effect [Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 108, 1–24]. Related are the increased demands for electric power as a result of population growth and increased need for mechanical cooling due to the UHI. In the United States, the Environmental Protection Agency has developed a three-prong approach of (1) cool pavements, (2) urban forestry and (3) cool roofs to mitigate the UHI. Researchers undertook an examination of micro scale benefits of the utilization of photovoltaic panels to reduce the thermal impacts to surface temperatures of pavements in comparison to urban forestry. The results of the research indicate that photovoltaic panels provide a greater thermal reduction benefit during the diurnal cycle in comparison to urban forestry while also providing the additional benefits of supporting peak energy demand, conserving water resources and utilizing a renewable energy source.

ContributorsGolden, Jay S. (Author) / Carlson, Joby (Author) / Kaloush, Kamil (Author) / Phelan, Patrick (Author)
Created2006-12-26