Matching Items (9)
151369-Thumbnail Image.png
Description
This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space

This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space which is the part of Minkowski space seen by an observer with a constant proper acceleration. Because it has an event horizon, Rindler space has been studied in great detail within the context of quantum field theory. However, a quantum gravitational treatment of Rindler space is handicapped by the fact that quantum gravity in flat space is poorly understood. By contrast, quantum gravity in anti-de Sitter space (AdS), is relatively well understood via the AdS/CFT correspondence. Taking this cue, we construct Rindler coordinates for AdS (Rindler-AdS space) in d + 1 spacetime dimensions. In three spacetime dimensions, we find novel one-parameter families of stationary vacua labeled by a rotation parameter β. The interesting thing about these rotating Rindler-AdS spaces is that they possess an observer-dependent ergoregion in addition to having an event horizon. Turning next to the application of AdS/CFT correspondence to Rindler-AdS space, we posit that the two Rindler wedges in AdSd+1 are dual to an entangled conformal field theory (CFT) that lives on two boundaries with geometry R × Hd-1. Specializing to three spacetime dimensions, we derive the thermodynamics of Rindler-AdS space using the boundary CFT. We then probe the causal structure of the spacetime by sending in a time-like source and observe that the CFT “knows” when the source has fallen past the Rindler horizon. We conclude by proposing an alternate foliation of Rindler-AdS which is dual to a CFT living in de Sitter space. Towards the end, we consider the concept of weak measurements in quantum mechanics, wherein the measuring instrument is weakly coupled to the system being measured. We consider such measurements in the context of two examples, viz. the decay of an excited atom, and the tunneling of a particle trapped in a well, and discuss the salient features of such measurements.
ContributorsSamantray, Prasant (Author) / Parikh, Maulik (Thesis advisor) / Davies, Paul (Committee member) / Vachaspati, Tanmay (Committee member) / Easson, Damien (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2012
156425-Thumbnail Image.png
Description
With the high demand for faster and smaller wireless communication devices, manufacturers have been pushed to explore new materials for smaller and faster transistors. One promising class of transistors is high electron mobility transistors (HEMT). AlGaAs/GaAs HEMTs have been shown to perform well at high power and high frequencies.

With the high demand for faster and smaller wireless communication devices, manufacturers have been pushed to explore new materials for smaller and faster transistors. One promising class of transistors is high electron mobility transistors (HEMT). AlGaAs/GaAs HEMTs have been shown to perform well at high power and high frequencies. However, AlGaN/GaN HEMTs have been gaining more attention recently due to their comparatively higher power densities and better high frequency performance. Nevertheless, these devices have experienced truncated lifetimes. It is assumed that reducing defect densities in these materials will enable a more direct study of the failure mechanisms in these devices. In this work we present studies done to reduce interfacial oxygen at N-polar GaN/GaN interfaces, growth conditions for InAlN barrier layer, and microanalysis of a partial InAlN-based HEMT. Additionally, the depth of oxidation of an InAlN layer on a gate-less InAlN/GaN metal oxide semiconductor HEMT (MOSHEMT) was investigated. Measurements of electric fields in AlGaN/GaN HEMTs with and without field plates are also presented.
ContributorsMcConkie, Thomas O. (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha (Committee member) / Ponce, Fernando A. (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2018
154298-Thumbnail Image.png
Description
To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements

To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, consisting of a remotely interrogating array of dipoles, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002.

In the present work a remotely interrogating slot antenna inside a 60nm silver slab is designed which increases the signal to noise ratio of the original system. The antenna is tuned to resonance at 600nm range by taking advantage of the plasmon resonance properties of the metal’s negative permittivity and judicious shaping of the slot element. Full-physics simulations show the capability of detecting an 8nm particle using red light illumination. The sensitivity to the λ/78 particle is attained by detecting the change induced on the antenna’s far field signature by the proximate particle, a change that is 15dB greater than the scattering signature of the particle by itself.

To verify the capabilities of this technology in a readily accessible experimental environment, a radiofrequency scale model is designed using a meta-material to mimic the optical properties of silver in the 2GHz to 5GHz range. Various approaches to the replication of the metal’s behavior are explored in a trade-off between fidelity to the metal’s natural plasmon response, desired bandwidth of the demonstration, and

ii

manufacturability of the meta-material. The simulation and experimental results successfully verify the capability of the proposed near-field sensor in sub-wavelength detection and imaging not only as a proof of concept for optical frequencies but also as a potential imaging device for radio frequencies.
ContributorsMostafavi, Mahkamehossadat (Author) / Diaz, Rodolfo E (Thesis advisor) / Pan, George W (Committee member) / Aberle, James T (Committee member) / Ning, Cun-Zheng (Committee member) / Arizona State University (Publisher)
Created2016
155235-Thumbnail Image.png
Description
Articially engineered two-dimensional materials, which are widely known as

metasurfaces, are employed as ground planes in various antenna applications. Due to

their nature to exhibit desirable electromagnetic behavior, they are also used to design

waveguiding structures, absorbers, frequency selective surfaces, angular-independent

surfaces, etc. Metasurfaces usually consist of electrically small conductive planar

patches arranged in a

Articially engineered two-dimensional materials, which are widely known as

metasurfaces, are employed as ground planes in various antenna applications. Due to

their nature to exhibit desirable electromagnetic behavior, they are also used to design

waveguiding structures, absorbers, frequency selective surfaces, angular-independent

surfaces, etc. Metasurfaces usually consist of electrically small conductive planar

patches arranged in a periodic array on a dielectric covered ground plane. Holographic

Articial Impedance Surfaces (HAISs) are one such metasurfaces that are capable of

forming a pencil beam in a desired direction, when excited with surface waves. HAISs

are inhomogeneous surfaces that are designed by modulating its surface impedance.

This surface impedance modulation creates a periodical discontinuity that enables a

part of the surface waves to leak out into the free space leading to far-eld radia-

tion. The surface impedance modulation is based on the holographic principle. This

dissertation is concentrated on designing HAISs with

Desired polarization for the pencil beam

Enhanced bandwidth

Frequency scanning

Conformity to curved surfaces

HAIS designs considered in this work include both one and two dimensional mod-

ulations. All the designs and analyses are supported by mathematical models and

HFSS simulations.
ContributorsPandi, Sivaseetharaman (Author) / Balanis, Constantine A (Thesis advisor) / Palais, Joseph (Committee member) / Aberle, James T., 1961- (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2017
Description
In the frenzy of next generation genetic sequencing and proteomics, single-cell level analysis has begun to find its place in the crux of personalized medicine and cancer research. Single live cell 3D imaging technology is one of the most useful ways of providing spatial and morphological details inside living single

In the frenzy of next generation genetic sequencing and proteomics, single-cell level analysis has begun to find its place in the crux of personalized medicine and cancer research. Single live cell 3D imaging technology is one of the most useful ways of providing spatial and morphological details inside living single cells. It provides a window to uncover the mysteries of protein structure and folding, as well as genetic expression over time, which will tremendously improve the state of the fields of biophysics and biomedical research. This thesis project specifically demonstrates a method for live single cell rotation required to image them in the single live cell CT imaging platform. The method of rotation proposed in this thesis uses dynamic optical traps generated by a phase-only spatial light modulator (SLM) to exert torque on a single mammalian cell. Laser patterns carrying the holographic information of the traps are delivered from the SLM through a transformation telescope into the objective lens and onto its focal plane to produce the desired optical trap "image". The phase information in the laser patterns being delivered are continuously altered by the SLM such that the structure of the wavefront produces two foci at opposite edges of the cell of interest that each moves along the circumference of the cell in opposite axial directions. Momentum generated by the motion of the foci exerts a torque on the cell, causing it to rotate. The viability of this method was demonstrated experimentally. Software was written using LabVIEW to control the display panel of the SLM.
ContributorsChan, Samantha W (Author) / Meldrum, Deridre R (Thesis advisor) / Kleim, Jeffrey A (Committee member) / Johnson, Roger H (Committee member) / Kelbauskas, Laimonas (Committee member) / Arizona State University (Publisher)
Created2013
141315-Thumbnail Image.png
Description

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may not be exclusively good. We reveal implications for the “dark side” of institutional trust by reviewing relevant theories and empirical research that can contribute to a more holistic understanding. We frame our discussion by suggesting there may be a “Goldilocks principle” of institutional trust, where trust that is too low (typically the focus) or too high (not usually considered by trust researchers) may be problematic. The chapter focuses on the issue of too-high trust and processes through which such too-high trust might emerge. Specifically, excessive trust might result from external, internal, and intersecting external-internal processes. External processes refer to the actions institutions take that affect public trust, while internal processes refer to intrapersonal factors affecting a trustor’s level of trust. We describe how the beneficial psychological and behavioral outcomes of trust can be mitigated or circumvented through these processes and highlight the implications of a “darkest” side of trust when they intersect. We draw upon research on organizations and legal, governmental, and political systems to demonstrate the dark side of trust in different contexts. The conclusion outlines directions for future research and encourages researchers to consider the ethical nuances of studying how to increase institutional trust.

ContributorsNeal, Tess M.S. (Author) / Shockley, Ellie (Author) / Schilke, Oliver (Author)
Created2016
158105-Thumbnail Image.png
Description
Impedance-modulated metasurfaces are compact artificially-engineered surfaces whose surface-impedance profile is modulated with a periodic function. These metasurfaces function as leaky-wave antennas (LWAs) that are capable of achieving high gains and narrow beamwidths with thin and light-weight structures. The surface-impedance modulation function for the desired radiation characteristics can be obtained using

Impedance-modulated metasurfaces are compact artificially-engineered surfaces whose surface-impedance profile is modulated with a periodic function. These metasurfaces function as leaky-wave antennas (LWAs) that are capable of achieving high gains and narrow beamwidths with thin and light-weight structures. The surface-impedance modulation function for the desired radiation characteristics can be obtained using the holographic principle, whose application in antennas has been investigated extensively.

On account of their radiation and physical characteristics, modulated metasurfaces can be employed in automotive radar, 5G, and imaging applications. Automotive radar applications might require the antennas to be flush-mounted on the vehicular bodies that can be curved. Hence, it is necessary to analyze and design conformal metasurface antennas. The surface-impedance modulation function is derived for cylindrically-curved metasurfaces, where the impedance modulation is along the cylinder axis. These metasurface antennas are referred to as axially-modulated cylindrical metasurface LWAs (AMCLWAs). The effect of curvature is modeled, the radiation characteristics are predicted analytically, and they are validated by simulations and measurements.

Communication-based applications, like 5G and 6G, require the generation of multiple beams with polarization diversity, which can be achieved using a class of impedance-modulated metasurfaces referred to as polarization-diverse holographic metasurfaces (PDHMs). PDHMs can form, one at a time, a pencil beam in the desired direction with horizontal polarization, vertical polarization, left-hand circular polarization (LHCP), or right-hand circular polarization (RHCP). These metasurface antennas are analyzed, designed, measured, and improved to include the ability to frequency scan.

In automotive radar and other imaging applications, the performance of metasurface antennas can be impacted by the formation of standing waves due to multiple reflections between the antenna and the target. The monostatic RCS of the metasurface antenna is reduced by modulating its surface impedance with a square wave, to avert multiple reflections. These square-wave-modulated metasurfaces are referred to as checkerboard metasurface LWAs, whose radiation and scattering characteristics, for normal incidence parallel polarization, are analyzed and measured.
ContributorsRamalingam, Subramanian (Author) / Balanis, Constantine A. (Thesis advisor) / Aberle, James T. (Committee member) / Palais, Joseph C. (Committee member) / Trichopoulos, Georgios C. (Committee member) / Arizona State University (Publisher)
Created2020
158815-Thumbnail Image.png
Description
Recent developments inspired by string theoretic considerations provide multiple maps between gravitational and non-gravitational degrees of freedom. In this dis- sertation I discuss aspects of three such dualities, the gauge/gravity duality and how it applies to condensed matter systems, the fluid-gravity duality, and the color-kinematics duality.

The first of these, colloquially

Recent developments inspired by string theoretic considerations provide multiple maps between gravitational and non-gravitational degrees of freedom. In this dis- sertation I discuss aspects of three such dualities, the gauge/gravity duality and how it applies to condensed matter systems, the fluid-gravity duality, and the color-kinematics duality.

The first of these, colloquially referred to as holography, in its simplest form posits a mapping of d-dimensional conformal field theory (boundary) partition functions onto d+1 dimensional gravitational(bulk) partition functions, where the space-time carries a negative cosmological constant. In this dissertation I discuss the results of our calculations examining the emergence of Fermi-surface like structures in the bulk spacetime despite the absence of explicit Fermions in the theory.Specifically the 4+1 dimensional Einstein-Maxwell-Chern-Simons theory with scalar degrees of freedom, with and without symmetry breaking is considered. These theories are gravity duals to spatially modulated gauge theories. The results of calculations presented here indicate the existence of a rich phase space, most prominently Fermi shells are seen.

The second set of dualities considered are the color-kinematic duality, also known as the double-copy paradigm and the fluid-gravity duality. The color-kinematic duality involves identifying spin-2 amplitudes as squares of spin-1 gauge amplitudes. This double copy picture is utilized to construct “single copy” representations for space- times where Einstein’s equations reduce to incompressible Navier-Stokes equations. In this dissertation I show how spacetimes that characterize irrotational fluids and constant vorticity fluids each map to distinct algebraically special spacetimes. The Maxwell fields obtained via the double-copy picture for such spacetimes further provide interesting parallels, for instance, the vorticity of the fluid is proportional to the magnetic field of the associated gauge field.
ContributorsMonga, Nikhil (Author) / Keeler, Cynthia A. (Thesis advisor) / Lebed, Richard (Committee member) / Erten, Onur (Committee member) / Baumgart, Matthew (Committee member) / Arizona State University (Publisher)
Created2020
158509-Thumbnail Image.png
Description
Here I develop the connection between thermodynamics, entanglement, and gravity. I begin by showing that the classical null energy condition (NEC) can arise as a consequence of the second law of thermodynamics applied to local holographic screens. This is accomplished by essentially reversing the steps of Hawking's area theorem, leading

Here I develop the connection between thermodynamics, entanglement, and gravity. I begin by showing that the classical null energy condition (NEC) can arise as a consequence of the second law of thermodynamics applied to local holographic screens. This is accomplished by essentially reversing the steps of Hawking's area theorem, leading to the Ricci convergence condition as an input, from which an application of Einstein's equations yields the NEC. Using the same argument, I show logarithmic quantum corrections to the Bekenstein-Hawking entropy formula do not alter the form of the Ricci convergence condition, but obscure its connection to the NEC. Then, by attributing thermodynamics to the stretched horizon of future lightcones -- a timelike hypersurface generated by a collection of radially accelerating observers with constant and uniform proper acceleration -- I derive Einstein's equations from the Clausius relation. Based on this derivation I uncover a local first law of gravity, connecting gravitational entropy to matter energy and work. I then provide an entanglement interpretation of stretched lightcone thermodynamics by extending the entanglement equilibrium proposal. Specifically I show that the condition of fixed volume can be understood as subtracting the irreversible contribution to the thermodynamic entropy. Using the AdS/CFT correspondence, I then provide a microscopic explanation of the 'thermodynamic volume' -- the conjugate variable to the pressure in extended black hole thermodynamics -- and reveal the super-entropicity of three-dimensional AdS black holes is due to the gravitational entropy overcounting the number of available dual CFT states. Finally, I conclude by providing a recent generlization of the extended first law of entanglement, and study its non-trivial 2+1- and 1+1-dimensional limits. This thesis is self-contained and pedagogical by including useful background content relevant to emergent gravity.
ContributorsSvesko, Andrew (Author) / Parikh, Maulik (Thesis advisor) / Vachaspati, Tanmay (Thesis advisor) / Keeler, Cynthia (Committee member) / Easson, Damien (Committee member) / Arizona State University (Publisher)
Created2020