Matching Items (25)
147599-Thumbnail Image.png
Description

The scope of this project is a combination of material science engineering and mechanical engineering. Overall, the main goal of this project is to develop a lightweight concrete that maintains its original strength profile. Initial research has shown that a plastic-concrete composite could create a more lightweight concrete than that

The scope of this project is a combination of material science engineering and mechanical engineering. Overall, the main goal of this project is to develop a lightweight concrete that maintains its original strength profile. Initial research has shown that a plastic-concrete composite could create a more lightweight concrete than that made using the typical gravel aggregate for concrete, while still maintaining the physical strength that concrete is known for. This will be accomplished by varying the amount of plastic in the aggregate. If successful, this project would allow concrete to be used in applications it would typically not be suitable for.<br/>After testing the strength of the concrete specimens with varying fills of plastic aggregate it was determined that the control group experienced an average peak stress of 2089 psi, the 16.67% plastic group experienced an average peak stress of 2649 psi, the 33.3% plastic group experienced an average peak stress of 1852 psi, and the 50% plastic group experienced an average stress of 924.5 psi. The average time to reach the peak stress was found to be 12 minutes and 24 seconds in the control group, 15 minutes and 34 seconds in the 16.7% plastic group, 9 minutes and 45 seconds in the 33.3% plastic group, and 10 minutes and 58 seconds in the 50% plastic group. Taking the average of the normalized weights of the cylindrical samples it was determined that the control group weighed 14.773 oz/in, the 16.7% plastic group weighed 15 oz/in, the 33.3% plastic group weighed 14.573 oz/in, and the 50% plastic group weighed 12.959 oz/in. Based on these results it can be concluded that a small addition of plastic aggregate can be beneficial in creating a lighter, stronger concrete. The results show that a 16.7% fill ratio of plastic to rock aggregate can increase the failure time and the peak strength of a composite concrete. Overall, the experiment was successful in analyzing the effects of recycled plastic aggregate in composite concrete. <br/>Some possible future studies related to this subject material are adding aluminum to the concrete, having better molds, looking for the right consistency in each mixture, mixing for each mold individually, and performing other tests on the samples.

ContributorsClegg, Lauren Taylor (Co-author) / Benning, Taylor (Co-author) / Nian, Qiong (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147600-Thumbnail Image.png
Description

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could create a more lightweight concrete than that made using the<br/>typical

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could create a more lightweight concrete than that made using the<br/>typical gravel aggregate for concrete, while still maintaining the physical strength that concrete is<br/>known for. This will be accomplished by varying the amount of plastic in the aggregate. If<br/>successful, this project would allow concrete to be used in applications it would typically not be<br/>suitable for.<br/>After testing the strength of the concrete specimens with varying fills of plastic aggregate<br/>it was determined that the control group experienced an average peak stress of 2089 psi, the<br/>16.67% plastic group experienced an average peak stress of 2649 psi, the 33.3% plastic group<br/>experienced an average peak stress of 1852 psi, and the 50% plastic group experienced an<br/>average stress of 924.5 psi. The average time to reach the peak stress was found to be 12 minutes<br/>and 24 seconds in the control group, 15 minutes and 34 seconds in the 16.7% plastic group, 9<br/>minutes and 45 seconds in the 33.3% plastic group, and 10 minutes and 58 seconds in the 50%<br/>plastic group. Taking the average of the normalized weights of the cylindrical samples it was<br/>determined that the control group weighed 14.773 oz/in, the 16.7% plastic group weighed 15<br/>oz/in, the 33.3% plastic group weighed 14.573 oz/in, and the 50% plastic group weighed 12.959<br/>oz/in. Based on these results it can be concluded that a small addition of plastic aggregate can be<br/>beneficial in creating a lighter, stronger concrete. The results show that a 16.7% fill ratio of<br/>plastic to rock aggregate can increase the failure time and the peak strength of a composite<br/>concrete. Overall, the experiment was successful in analyzing the effects of recycled plastic<br/>aggregate in composite concrete.<br/>Some possible future studies related to this subject material are adding aluminum to the<br/>concrete, having better molds, looking for the right consistency in each mixture, mixing for each<br/>mold individually, and performing other tests on the samples.

ContributorsBenning, Taylor Ann (Co-author) / Clegg, Lauren (Co-author) / Nian, Qiong (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141315-Thumbnail Image.png
Description

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may not be exclusively good. We reveal implications for the “dark side” of institutional trust by reviewing relevant theories and empirical research that can contribute to a more holistic understanding. We frame our discussion by suggesting there may be a “Goldilocks principle” of institutional trust, where trust that is too low (typically the focus) or too high (not usually considered by trust researchers) may be problematic. The chapter focuses on the issue of too-high trust and processes through which such too-high trust might emerge. Specifically, excessive trust might result from external, internal, and intersecting external-internal processes. External processes refer to the actions institutions take that affect public trust, while internal processes refer to intrapersonal factors affecting a trustor’s level of trust. We describe how the beneficial psychological and behavioral outcomes of trust can be mitigated or circumvented through these processes and highlight the implications of a “darkest” side of trust when they intersect. We draw upon research on organizations and legal, governmental, and political systems to demonstrate the dark side of trust in different contexts. The conclusion outlines directions for future research and encourages researchers to consider the ethical nuances of studying how to increase institutional trust.

ContributorsNeal, Tess M.S. (Author) / Shockley, Ellie (Author) / Schilke, Oliver (Author)
Created2016
Description

The goal of this experiment was to examine the energy absorption properties of origami-inspired honeycomb and standard honeycomb structures. These structures were 3D printed with two different materials: thermoplastic polyurethane (TPU) and acrylonitrile butadiene styrene (ABS). Quasi-static compression testing was performed on these structures for both types and materials at

The goal of this experiment was to examine the energy absorption properties of origami-inspired honeycomb and standard honeycomb structures. These structures were 3D printed with two different materials: thermoplastic polyurethane (TPU) and acrylonitrile butadiene styrene (ABS). Quasi-static compression testing was performed on these structures for both types and materials at various wall thicknesses. The energy absorption and other material properties were analyzed for each structure. Overall, the results indicate that origami-inspired structures perform best at energy absorption at a higher wall thickness with a rigid material. The results also indicated that standard honeycomb structures perform better with lower wall thickness, and also perform better with a rigid, rather than a flexible material. Additionally, it was observed that a flexible material, like TPU, better demonstrates the folding and recovery properties of origami-inspired structures. The results of this experiment have applications wherever honeycomb structures are used, mostly on aircraft and spacecraft. In vehicles with structures of a sufficiently high wall thickness with a rigid material, origami-inspired honeycomb structures could be used instead of current honeycomb structures in order to better protect the passengers or payload through improved energy absorption.

ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05
164263-Thumbnail Image.png
ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164264-Thumbnail Image.png
ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164265-Thumbnail Image.png
ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164266-Thumbnail Image.png
ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164267-Thumbnail Image.png
ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164268-Thumbnail Image.png
ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05