Matching Items (7)
Filtering by

Clear all filters

152043-Thumbnail Image.png
Description
The main objective of this study is to investigate the mechanical behaviour of cementitious based composites subjected dynamic tensile loading, with effects of strain rate, temperature, addition of short fibres etc. Fabric pullout model and tension stiffening model based on finite difference model, previously developed at Arizona State University were

The main objective of this study is to investigate the mechanical behaviour of cementitious based composites subjected dynamic tensile loading, with effects of strain rate, temperature, addition of short fibres etc. Fabric pullout model and tension stiffening model based on finite difference model, previously developed at Arizona State University were used to help study the bonding mechanism between fibre and matrix, and the phenomenon of tension stiffening due to the addition of fibres and textiles. Uniaxial tension tests were conducted on strain-hardening cement-based composites (SHCC), textile reinforced concrete (TRC) with and without addition of short fibres, at the strain rates ranging from 25 s-1 to 100 s-1. Historical data on quasi-static tests of same materials were used to demonstrate the effects including increases in average tensile strength, strain capacity, work-to-fracture due to high strain rate. Polyvinyl alcohol (PVA), glass, polypropylene were employed as reinforcements of concrete. A state-of-the-art phantom v7 high speed camera was setup to record the video at frame rate of 10,000 fps. Random speckle pattern of texture style was made on the surface of specimens for image analysis. An optical non-contacting deformation measurement technique referred to as digital image correlation (DIC) method was used to conduct the image analysis by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-filed strain distribution, strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and corrected the stress-strain responses.
ContributorsYao, Yiming (Author) / Barzin, Mobasher (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2013
152932-Thumbnail Image.png
Description
The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and

The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and wollastonite nano-fibers were developed and tested under low vacuum conditions to simulate severe evaporation conditions and expedite the drying process causing plastic shrinkage cracks. Cumulative moisture loss, evaporation rates, and diffusivity were analyzed by means of a 2-stage diffusion simulation approach, developed previously in Arizona State University. Effect of fiber-matrix interaction on the transport properties of the composite were evaluated using the existing approach. Morphology of the cracked surface was investigated by the means of image analysis wherein length, width, area and density of the cracks were computed to help characterize the contribution of fiber and textile in the cracking phenomenon. Additionally, correlation between cumulative moisture loss and crack propagation was attempted. The testing procedures and associated analytical methods were applied to evaluate effectiveness of four wollastonite fiber sizes and also a hybrid reinforcement system with alkali-resistant glass (ARG) textile in improving shrinkage cracking related parameters. Furthermore, the experimental and analytical approach was extended to magnified version of the existing shrinkage testing set-up to study the size effect of these composites when subjected to matching drying conditions. Different restraining mechanisms were used to study the simulation of the cracking phenomena on a larger specimen. Paste and mortar formulations were developed to investigate size effect on shrinkage resistance of cementitious composites.
ContributorsKachala, Robert (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014
152620-Thumbnail Image.png
Description
The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in

The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.
ContributorsAswani, Karan (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014
153808-Thumbnail Image.png
Description
Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The

Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The work was commissioned by violinist Lev Polyakin, who specifically requested some short pieces that could be performed in a local jazz establishment named Night Town in Cleveland, Ohio. The result is a work that is approximately fifteen minutes in length. Schoenfeld is a respected composer in the contemporary classical music community, whose Café Music (1986) for piano trio has recently become a staple of the standard chamber music repertoire. Many of his other works, however, remain in relative obscurity. It is the focus of this document to shed light on at least one other notable composition; Four Souvenirs for Violin and Piano. Among the topics to be discussed regarding this piece are a brief history behind the genesis of this composition, a structural summary of the entire work and each of its movements, and an appended practice guide based on interview and coaching sessions with the composer himself. With this project, I hope to provide a better understanding and appreciation of this work.
ContributorsJanczyk, Kristie Annette (Author) / Ryan, Russell (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
154430-Thumbnail Image.png
Description
The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites

The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and correlate the behavior of these structural composites under uniaxial tension and flexural loading responses. Development and use of analytical models enables optimal design for application of these materials in structural applications. Another area of immediate focus is the development of new construction products from SHCC laminates such as angles, channels, hat sections, closed sections with optimized cross sections. Sandwich composites with stress skin-cellular core concept were also developed to utilize strength and ductility of fabric reinforced skin in addition to thickness, ductility, and thermal benefits of cellular core materials. The proposed structurally efficient and durable sections promise to compete with wood and light gage steel based sections for lightweight construction and panel application
ContributorsDey, Vikram (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Underwood, Benjamin (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
154457-Thumbnail Image.png
Description
This study employs a finite element method based modeling of cementitious composite microstructure to study the effect of presence of inclusions on the stress distribution and the constitutive response of the composite. A randomized periodic microstructure combined with periodic boundary conditions forms the base of the finite element models. Inclusion

This study employs a finite element method based modeling of cementitious composite microstructure to study the effect of presence of inclusions on the stress distribution and the constitutive response of the composite. A randomized periodic microstructure combined with periodic boundary conditions forms the base of the finite element models. Inclusion properties of quartz and light weight aggregates of size 600μm obtained from literature were made use of to study the effect of their material (including inclusion stiffness, stiffness of interfacial transition zone and matrix stiffening) and geometric properties (volume fraction of inclusion, particle size distribution of inclusion and thickness of the interfacial transition zone) on the composite. Traction-separation relationship was used to incorporate the effect of debonding at the interface of the matrix and the inclusion to study the effect on stress distribution in the microstructure. The stress distributions observed upon conducting a finite element analysis are caused due to the stiffness mismatch in both the quartz and the light weight aggregates as expected. The constitutive response of the composite microstructure is found to be in good conformance with semi-analytical models as well as experimental values. The effect of debonding throws up certain important observations on the stress distributions in the microstructure based on the stress concentrations and relaxations caused by the stiffness of the individual components of the microstructure. The study presented discusses the different micromechanical models employed, their applicability and suitability to correctly predict the composite constitutive response.
ContributorsMaroli, Amit (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
154761-Thumbnail Image.png
Description
Samuel Máynez Prince (1886-1966), was a prolific and important Mexican musician. Prince’s musical style followed the trends of the nineteenth-century salon music genre. His compositions include lullabies, songs, dances, marches, mazurkas, waltzes, and revolutionary anthems. Prince’s social status and performances in the famed Café Colón in Mexico City increased his

Samuel Máynez Prince (1886-1966), was a prolific and important Mexican musician. Prince’s musical style followed the trends of the nineteenth-century salon music genre. His compositions include lullabies, songs, dances, marches, mazurkas, waltzes, and revolutionary anthems. Prince’s social status and performances in the famed Café Colón in Mexico City increased his popularity among high-ranking political figures during the time of the Mexican Revolution as well as his status in the Mexican music scene.

Unfortunately there is virtually no existing scholarship on Prince and even basic information regarding his life and works is not readily available. The lack of organization of the manuscript scores and the absence of dates of his works has further pushed the composer into obscurity. An investigation therefore was necessary in order to explore the neglected aspects of the life and works of Prince as a violinist and composer. This document is the result of such an investigation by including extensive new biographical information, as well as the first musical analysis and edition of the complete recovered works for violin and piano.

In order to fill the gaps present in the limited biographical information regarding Prince’s life, investigative research was conducted in Mexico City. Information was drawn from archives of the composer’s grandchildren, the Palacio de Bellas Artes, the Conservatorio Nacional de Música de México, and the Orquesta Sinfónica Nacional. The surviving relatives provided first-hand details on events in the composer’s life; one also offered the researcher access to their personal archive including, important life documents, photographs, programs from concert performances, and manuscript scores of the compositions. Establishing connections with the relatives also led the researcher to examining the violins owned and used by the late violinist/composer.

This oral history approach led to new and updated information, including the revival of previously unpublished music for violin and piano. These works are here compiled in an edition that will give students, teachers, and music-lovers access to this unknown repertoire. Finally, this research seeks to promote the beauty and nuances of Mexican salon music, and the complete works for violin and piano of Samuel Máynez Prince in particular.
ContributorsEkenes, Spencer Arvin (Author) / McLin, Katherine (Thesis advisor) / Feisst, Sabine (Committee member) / Jiang, Danwen (Committee member) / Arizona State University (Publisher)
Created2016