Matching Items (794)
Filtering by

Clear all filters

ContributorsChang, Ruihong (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-29
153808-Thumbnail Image.png
Description
Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The

Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The work was commissioned by violinist Lev Polyakin, who specifically requested some short pieces that could be performed in a local jazz establishment named Night Town in Cleveland, Ohio. The result is a work that is approximately fifteen minutes in length. Schoenfeld is a respected composer in the contemporary classical music community, whose Café Music (1986) for piano trio has recently become a staple of the standard chamber music repertoire. Many of his other works, however, remain in relative obscurity. It is the focus of this document to shed light on at least one other notable composition; Four Souvenirs for Violin and Piano. Among the topics to be discussed regarding this piece are a brief history behind the genesis of this composition, a structural summary of the entire work and each of its movements, and an appended practice guide based on interview and coaching sessions with the composer himself. With this project, I hope to provide a better understanding and appreciation of this work.
ContributorsJanczyk, Kristie Annette (Author) / Ryan, Russell (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
153941-Thumbnail Image.png
Description
Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations and modeling results have led to various proposals for HE

Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations and modeling results have led to various proposals for HE mechanisms. Therefore, to gain insights into HE mechanisms in iron, this dissertation aims to investigate several key issues involving HE such as: a) the incipient crack tip events; b) the cohesive strength of grain boundaries (GBs); c) the dislocation-GB interactions and d) the dislocation mobility.

The crack tip, which presents a preferential trap site for hydrogen segregation, was examined using atomistic methods and the continuum based Rice-Thompson criterion as sufficient concentration of hydrogen can alter the crack tip deformation mechanism. Results suggest that there is a plausible co-existence of the adsorption induced dislocation emission and hydrogen enhanced decohesion mechanisms. In the case of GB-hydrogen interaction, we observed that the segregation of hydrogen along the interface leads to a reduction in cohesive strength resulting in intergranular failure. A methodology was further developed to quantify the role of the GB structure on this behavior.

GBs play a fundamental role in determining the strengthening mechanisms acting as an impediment to the dislocation motion; however, the presence of an unsurmountable barrier for a dislocation can generate slip localization that could further lead to intergranular crack initiation. It was found that the presence of hydrogen increases the strain energy stored within the GB which could lead to a transition in failure mode. Finally, in the case of body centered cubic metals, understanding the complex screw dislocation motion is critical to the development of an accurate continuum description of the plastic behavior. Further, the presence of hydrogen has been shown to drastically alter the plastic deformation, but the precise role of hydrogen is still unclear. Thus, the role of hydrogen on the dislocation mobility was examined using density functional theory and atomistic simulations. Overall, this dissertation provides a novel atomic-scale understanding of the HE mechanism and development of multiscale tools for future endeavors.
ContributorsAdlakha, Ilaksh (Author) / Solanki, Kiran (Thesis advisor) / Mignolet, Marc (Committee member) / Chawla, Nikhilesh (Committee member) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2015
157459-Thumbnail Image.png
Description
Atmospheric deposition of iron (Fe) can limit primary productivity and carbon dioxide uptake in some marine ecosystems. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. Existing studies of burn-induced trace element mobilization have often collected both entrained soil

Atmospheric deposition of iron (Fe) can limit primary productivity and carbon dioxide uptake in some marine ecosystems. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from biomass burning, making it difficult to determine the actual source of aerosolized trace metals.

In order to better constrain the importance of biomass versus entrained soil as a source of trace metals in burn aerosols, small-scale burn experiments were conducted using soil-free foliage representative of a variety of fire-impacted ecosystems. The resulting burn aerosols were collected in two stages (PM > 2.5 μm and PM < 2.5 μm) on cellulose filters using a high-volume air sampler equipped with an all-Teflon impactor. Unburned foliage and burn aerosols were analyzed for Fe and other trace metals using inductively coupled plasma mass spectrometry (ICP-MS).

Results of this analysis show that less than 2% of Fe in plant biomass is likely mobilized as atmospheric aerosols during biomass burning events. The results of this study and estimates of annual global wildfire area were used to estimate the impact of biomass burning aerosols on total atmospheric Fe flux to the ocean. I estimate that foliage-derived Fe contributes 114 ± 57 Gg annually. Prior studies, which implicitly include both biomass and soil-derived Fe, concluded that biomass burning contributes approximately 690 Gg of Fe. Together, these studies suggest that fire-entrained soil particles contribute 83% (576 Gg) of Fe in biomass burning emissions, while plant derived iron only accounts for at most 17%.
ContributorsSherry, Alyssa M (Author) / Anbar, Ariel D (Thesis advisor) / Herckes, Pierre (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2019
156742-Thumbnail Image.png
Description
ABSTRACT

Transition metals have been extensively employed to address various challenges

related to catalytic organic transformations, small molecule activation, and energy storage

over the last few decades. Inspired by recent catalytic advances mediated by redox noninnocent

pyridine diimine (PDI) and α-diimine (DI) ligand supported transition metals,

our group has designed new PDI and DI ligands

ABSTRACT

Transition metals have been extensively employed to address various challenges

related to catalytic organic transformations, small molecule activation, and energy storage

over the last few decades. Inspired by recent catalytic advances mediated by redox noninnocent

pyridine diimine (PDI) and α-diimine (DI) ligand supported transition metals,

our group has designed new PDI and DI ligands by modifying the imine substituents to

feature donor atoms. My doctoral research is focused on the development of PDI and DI

ligand supported low valent first row metal complexes (Mn, Fe, Co) and their application

in bond activation reactions and the hydrofunctionalization of unsaturated bonds.

First two chapters of this dissertation are centered on the synthesis and

application of redox non-innocent ligand supported low valent iron complexes. Notably,

reduction of a DI-based iron dibromide led to the formation of a low valent iron

dinitrogen compound. This compound was found to undergo a sequential C-H and C-P

bond activation processes upon heating to form a dimeric compound. The plausible

mechanism for dimer formation is also described here.

Inspired by the excellent carbonyl hydrosilylation activity of our previously

reported Mn catalyst, (Ph2PPrPDI)Mn, attempts were made to synthesize second generation

Mn catalyst, which is described in the third chapter. Reduction of (PyEtPDI)MnCl2

furnished a deprotonated backbone methyl group containing Mn compound

[(PyEtPDEA)Mn] whereas reduction of (Ph2PEtPDI)MnCl2 produced a dimeric compound,

[(Ph2PEtPDI)Mn]2. Both compounds were characterized by NMR spectroscopy and XRD

analysis. Hydrosilylation of aldehydes and ketones have been studied using

[(PyEtPDEA)Mn] as a pre-catalyst. Similarly, 14 different aldehydes and 6 different

ii

formates were successfully hydrosilylated using [(Ph2PEtPDI)Mn]2 as a pre-catalyst.

Encouraged by the limited number of cobalt catalysts for nitrile hydroboration, we

sought to develop a cobalt catalyst that is active for hydroboration under mild conditions,

which is discussed in the last chapter. Treatment of (PyEtPDI)CoCl2 with excess NaEt3BH

furnished a diamagnetic Co(I) complex [(PyEtPDIH)Co], which exhibits a reduced imine

functionality. Having this compound characterized, a broad substrate scope for both

nitriles and imines have been investigated. The operative mechanism for nitrile

dihydroboration has been investigated based on the outcomes of a series of stoichiometric

reactions using NMR spectroscopy.
ContributorsGhosh, Chandrani (Author) / Trovitch, Ryan J. (Thesis advisor) / Seo, Don (Committee member) / Moore, Ana (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsASU Library. Music Library (Publisher)
Created2018-02-23
ContributorsWhite, Aaron (Performer) / Kim, Olga (Performer) / Hammond, Marinne (Performer) / Shaner, Hayden (Performer) / Yoo, Katie (Performer) / Shoemake, Crista (Performer) / Gebe, Vladimir, 1987- (Performer) / Wills, Grace (Performer) / McKinch, Riley (Performer) / Freshmen Four (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-27
ContributorsRosenfeld, Albor (Performer) / Pagano, Caio, 1940- (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-03
ContributorsASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsCao, Yuchen (Performer) / Chen, Sicong (Performer) / Soberano, Chino (Performer) / Nam, Michelle (Performer) / Collins, Clarice (Performer) / Witt, Juliana (Performer) / Liu, Jingting (Performer) / Chen, Neilson (Performer) / Zhang, Aihua (Performer) / Jiang, Zhou (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-25