Matching Items (381)
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
152595-Thumbnail Image.png
Description
The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students

The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students may have for three PV semiconductor phenomena; Diffusion, Drift and Excitation. These phenomena are emergent, a class of phenomena that have certain characteristics. In emergent phenomena, the individual entities in the phenomena interact and aggregate to form a self-organizing pattern that can be observed at a higher level. Learners develop a different type of misconception for these phenomena, an emergent misconception. Participants (N=41) completed a written protocol. The pilot study utilized half of these protocols (n = 20) to determine the presence of both general and emergent misconceptions for the three phenomena. Once the presence of both general and emergent misconceptions was confirmed, all protocols (N=41) were analyzed to determine the presence and prevalence of general and emergent misconceptions, and to note any relationships among these misconceptions (full study). Through written protocol analysis of participants' responses, numerous codes emerged from the data for both general and emergent misconceptions. General and emergent misconceptions were found in 80% and 55% of participants' responses, respectively. General misconceptions indicated limited understandings of chemical bonding, electricity and magnetism, energy, and the nature of science. Participants also described the phenomena using teleological, predictable, and causal traits, indicating participants had misconceptions regarding the emergent aspects of the phenomena. For both general and emergent misconceptions, relationships were observed between similar misconceptions within and across the three phenomena, and differences in misconceptions were observed across the phenomena. Overall, the presence and prevalence of both general and emergent misconceptions indicates that learners have limited understandings of the physical and emergent mechanisms for the phenomena. Even though additional work is required, the identification of specific misconceptions can be utilized to enhance semiconductor and PV course content. Specifically, changes can be made to curriculum in order to limit the formation of misconceptions as well as promote conceptual change.
ContributorsNelson, Katherine G (Author) / Brem, Sarah K. (Thesis advisor) / Mckenna, Ann F (Thesis advisor) / Hilpert, Jonathan (Committee member) / Honsberg, Christiana (Committee member) / Husman, Jenefer (Committee member) / Arizona State University (Publisher)
Created2014
152644-Thumbnail Image.png
Description
This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to easily quantify learning outcomes in biogeochemistry and will complement existing concept inventories in geology, chemistry, and biology.
ContributorsMead, Chris (Author) / Anbar, Ariel (Thesis advisor) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Herckes, Pierre (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
ContributorsZaleski, Kimberly (Contributor) / Kazarian, Trevor (Performer) / Ryan, Russell (Performer) / IN2ATIVE (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-28
ContributorsDelaney, Erin (Performer) / Novak, Gail (Pianist) (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
Description
ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work

ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work together toward the acceptance and success of a composer's music within an instrument community. For the flute, one such composer is Daniel Dorff (b. 1956). Dorff, a Philadelphia-based composer, has written for symphony orchestra, clarinet, contrabassoon, and others; however, his award-winning works for flute and piccolo are earning him much recognition. He has written works for such illustrious flutists as Mimi Stillman, Walfrid Kujala, and Gary Schocker; his flute works have been recorded by Laurel Zucker, Pamela Youngblood and Lois Bliss Herbine; and his pieces have been performed and premiered at each of the National Flute Association Conventions from 2004 to 2009. Despite this success, little has been written about Dorff's life, compositional style, and contributions to the flute repertory. In order to further promote the flute works of Daniel Dorff, the primary focus of this study is the creation of a compact disc recording of Dorff's most prominent works for flute: April Whirlwind, 9 Walks Down 7th Avenue, both for flute and piano, and Nocturne Caprice for solo flute. In support of this recording, the study also provides biographical information regarding Daniel Dorff, discusses his compositional methods and ideology, and presents background information, description, and performance notes for each piece. Interviews with Daniel Dorff regarding biographical and compositional details serve as the primary source for this document. Suggestions for the performance of the three flute works were gathered through interviews with prominent flutists who have studied and performed Dorff's pieces. Additional performance suggestions for Nocturne Caprice were gathered through a coaching session between the author and the composer. This project is meant to promote the flute works of Daniel Dorff and to help establish their role in the standard flute repertory.
ContributorsRich, Angela Marie (Contributor) / Novak, Gail (Pianist) (Performer) / Buck, Elizabeth Y (Thesis advisor) / Hill, Gary W. (Committee member) / Holbrook, Amy (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2010