Matching Items (388)
151725-Thumbnail Image.png
Description
Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina

Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
ContributorsPierini, Nicole A (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhi-Hua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
151967-Thumbnail Image.png
Description
A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of

A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of fluvial terraces in the region. Strath terraces are a common form (Chapters 2, 3, 4) and are created at the expense of bounding pediments that occur on the margins of constraining mountainous drainage boundaries (Chapters 1, 2, 3). Base-level fluctuations of the major drainages cause the formation of new straths at lower elevations. Dramatic pediment adjustment and subsequent regrading follows (Chapter 3), where pediments regrade to strath floodplains. This linkage between pediments and their distal straths is termed the pediment-strath relationship. Stability of the base level of the major drainage leads to lateral migration and straths are carved at the expense of bounding pediments through an erosional asymmetry facilitated by differential rock decay between the channel bank and bed. Fill terraces occur within the Salt River drainage basin as a result of the integration processes that connect formerly endorheic basins (Chapter 4). The topographic, spatial, and sedimentologic relationship of the Stewart Mountain terrace (Chapter 4) points to a different genetic origin than the lower terraces in this basin. The high Stewart Mountain fill terrace records the initial integration of this river. The strath terraces inset below the Stewart Mountain terrace are a result of the pediment-strath relationship. These case studies also reveal that the under-addressed drainage processes of piracy and overflow have significant impacts in the evolution of drainages the lead to both strath and fill terrace formation in this region.
ContributorsLarson, Phillip Herman (Author) / Dorn, Ron I (Thesis advisor) / Schmeeckle, Mark (Thesis advisor) / Douglass, John (Committee member) / Cerveny, Randy (Committee member) / Arizona State University (Publisher)
Created2013
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
150401-Thumbnail Image.png
Description
The North American Monsoon System (NAMS) contributes ~55% of the annual rainfall in the Chihuahuan Desert during the summer months. Relatively frequent, intense storms during the NAMS increase soil moisture, reduce surface temperature and lead to runoff in ephemeral channels. Quantifying these processes, however, is difficult due to the sparse

The North American Monsoon System (NAMS) contributes ~55% of the annual rainfall in the Chihuahuan Desert during the summer months. Relatively frequent, intense storms during the NAMS increase soil moisture, reduce surface temperature and lead to runoff in ephemeral channels. Quantifying these processes, however, is difficult due to the sparse nature of coordinated observations. In this study, I present results from a field network of rain gauges (n = 5), soil probes (n = 48), channel flumes (n = 4), and meteorological equipment in a small desert shrubland watershed (~0.05 km2) in the Jornada Experimental. Using this high-resolution network, I characterize the temporal and spatial variability of rainfall, soil conditions and channel runoff within the watershed from June 2010 to September 2011, covering two NAMS periods. In addition, CO2, water and energy measurements at an eddy covariance tower quantify seasonal, monthly and event-scale changes in land-atmosphere states and fluxes. Results from this study indicate a strong seasonality in water and energy fluxes, with a reduction in Bowen ratio (B, the ratio of sensible to latent heat fluxes) from winter (B = 14) to summer (B = 3.3). This reduction is tied to shallow soil moisture availability during the summer (s = 0.040 m3/m3) as compared to the winter (s = 0.004 m3/m3). During the NAMS, I analyzed four consecutive rainfall-runoff events to quantify the soil moisture and channel flow responses and how water availability impacted the land-atmosphere fluxes. Spatial hydrologic variations during events occur over distances as short as ~15 m. The field network also allowed comparisons of several approaches to estimate evapotranspiration (ET). I found a more accurate ET estimate (a reduction of mean absolute error by 38%) when using distributed soil moisture data, as compared to a standard water balance approach based on the tower site. In addition, use of spatially-varied soil moisture data yielded a more reasonable relationship between ET and soil moisture, an important parameterization in many hydrologic models. The analyses illustrates the value of high-resolution sampling for quantifying seasonal fluxes in desert shrublands and their improvements in closing the water balance in small watersheds.
ContributorsTempleton, Ryan (Author) / Vivoni, Enrique R (Thesis advisor) / Mays, Larry (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2011
151174-Thumbnail Image.png
Description
The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods,

The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods, and land management. I applied a distributed watershed model, the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS), to the Beaver Creek basin in Arizona. This sub-basin of the Verde River is representative of the regional topography, land cover, and soils distribution. As such, it can serve to illustrate the utility of distributed models for change assessment studies. Model calibration was performed utilizing radar-based NEXRAD data, and comparisons were done to two additional sources of precipitation data: ground-based stations and the North American Land Data Assimilation System (NLDAS). Comparisons focus on the spatiotemporal distributions of precipitation and stream discharge. Utilizing the calibrated model, I applied scenarios from the HadCM3 General Circulation Model (GCM) which was dynamically downscaled by the Weather Research and Forecast (WRF) model, to refine the representation of Arizona's regional climate. Two time periods were examined, a historical 1990-2000 and a future 2031-2040, to evaluate the hydrologic consequence in the form of differences and similarities between the decadal averages for temperature, precipitation, stream discharge and evapotranspiration. Results indicate an increase in mean air temperature over the basin by 1.2 ºC. The average decadal precipitation amounts increased between the two time periods by 2.4 times that of the historical period and had an increase in variability that was 3 times the historical period. For the future period, modeled streamflow discharge in the summer increased by a factor of 3. There was no significant change in the average evapotranspiration (ET). Overall trends of increase precipitation and variability for future climate scenarios have a more significant effect on the hydrologic response than temperature increases in the system during NAM in this study basin. The results from this study suggest that water management in the Beaver Creek will need to adapt to higher summer streamflow amounts.
ContributorsHawkins, Gretchen (Author) / Vivoni, Enrique R. (Thesis advisor) / Semken, Steven (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
Description
This research examines lateral separation zones and sand bar slope stability using two methods: a parallelized turbulence resolving model and full-scale laboratory experiments. Lateral flow separation occurs in rivers where banks exhibit strong curvature, for instance canyon rivers, sharp meanders and river confluences. In the Colorado River, downstream Glen Canyon

This research examines lateral separation zones and sand bar slope stability using two methods: a parallelized turbulence resolving model and full-scale laboratory experiments. Lateral flow separation occurs in rivers where banks exhibit strong curvature, for instance canyon rivers, sharp meanders and river confluences. In the Colorado River, downstream Glen Canyon Dam, lateral separation zones are the principal storage of sandbars. Maximum ramp rates have been imposed to Glen Canyon Dam operation to minimize mass loss of sandbars. Assessment of the effect of restricting maximum ramp rates in bar stability is conducted using multiple laboratory experiments. Results reveal that steep sandbar faces would rapidly erode by mass failure and seepage erosion to stable slopes, regardless of dam discharge ramp rates. Thus, continued erosion of sand bars depends primarily of turbulent flow and waves. A parallelized, three-dimensional, turbulence resolving model is developed to study flow structures in two lateral separation zones located along the Colorado River in Grand Canyon. The model employs a Detached Eddy Simulation (DES) technique where variables larger than the grid scale are fully resolved, while Sub-Grid-Scale (SGS) variables are modeled. The DES-3D model is validated using ADCP flow measurements and skill metric scores show predictive capabilities of simulated flow. The model reproduces the patterns and magnitudes of flow velocity in lateral recirculation zones, including size and position of primary and secondary eddy cells and return current. Turbulence structures with a predominately vertical axis of vorticity are observed in the shear layer, becoming three-dimensional without preferred orientation downstream. The DES-3D model is coupled with a sediment advection-diffusion formulation, wherein advection is provided by the DES velocity field minus particles settling velocity, and diffusion is provided by the SGS. Results show a lateral recirculation zone having a continuous export and import of sediment from and to the main channel following a pattern of high frequency pulsations of positive deposition fluxes. These high frequency pulsations play an important role to prevent an oversupply of sediment within the lateral separation zones. Improved predictive capabilities are achieved with this model when compared with previous two- and three-dimensional quasi steady and steady models.
ContributorsAlvarez Rueda, Laura Verónica (Author) / Schmeeckle, Mark W. (Thesis advisor) / Dorn, Ronald I. (Committee member) / Brazel, Anthony J. (Committee member) / Grams, Paul E. (Committee member) / Topping, David J. (Committee member) / Arizona State University (Publisher)
Created2015
156100-Thumbnail Image.png
Description
Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is

Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is the interaction between ephemeral channels and groundwater aquifers. Generally, it has been found that ephemeral channels contribute to groundwater recharge when streamflow infiltrates into the sandy bottoms of channels. This process has traditionally been studied in channels that drain large areas (10s to 100s km2). In this dissertation, I study the interactions between surface water and groundwater via ephemeral channels in a first-order watershed located on an arid piedmont slope within the Jornada Experimental Range (JER) in the Chihuahuan Desert. To achieve this, I utilize a combination of high-resolution observations and computer simulations using a modified hydrologic model to quantify groundwater recharge and shed light on the geomorphic and ecologic processes that affect the rate of recharge. Observational results indicate that runoff generated within the piedmont slope contributes significantly to deep percolation. During the short-term (6 yr) study period, we estimated 385 mm of total percolation, 62 mm/year, or a ratio of percolation to rainfall of 0.25. Based on the instrument network, we identified that percolation occurs inside channel areas when these receive overland sheetflow from hillslopes. By utilizing a modified version of the hydrologic model, TIN-based Real-time Integrated Basin Simulator (tRIBS), that was calibrated and validated using the observational dataset, I quantified the effects of changing watershed properties on groundwater recharge. Distributed model simulations quantify how deep percolation is produced during the streamflow generation process, and indicate that it plays a significant role in moderating the production of streamflow. Sensitivity analyses reveal that hillslope properties control the amount of rainfall necessary to initiate percolation while channel properties control the partitioning of hillslope runoff into streamflow and deep percolation. Synthetic vegetation experiments show that woody plant encroachment leads to increases in both deep percolation and streamflow. Further woody plant encroachment may result in the unexpected enhancement of dryland aquifer sustainability.
ContributorsSchreiner-McGraw, Adam P (Author) / Vivoni, Enrique R. (Thesis advisor) / Whipple, Kelin X. (Committee member) / Mascaro, Giuseppe (Committee member) / Throop, Heather L. (Committee member) / Sala, Osvaldo E. (Committee member) / Arizona State University (Publisher)
Created2017