Matching Items (391)
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
153905-Thumbnail Image.png
Description
Noninvasive neuromodulation could help treat many neurological disorders, but existing techniques have low resolution and weak penetration. Ultrasound (US) shows promise for stimulation of smaller areas and subcortical structures. However, the mechanism and parameter design are not understood. US can stimulate tail and hindlimb movements in rats, but not forelimb,

Noninvasive neuromodulation could help treat many neurological disorders, but existing techniques have low resolution and weak penetration. Ultrasound (US) shows promise for stimulation of smaller areas and subcortical structures. However, the mechanism and parameter design are not understood. US can stimulate tail and hindlimb movements in rats, but not forelimb, for unknown reasons. Potentially, US could also stimulate peripheral or enteric neurons for control of blood glucose.

To better understand the inconsistent effects across rat motor cortex, US modulation of electrically-evoked movements was tested. A stimulation array was implanted on the cortical surface and US (200 kHz, 30-60 W/cm2 peak) was applied while measuring changes in the evoked forelimb and hindlimb movements. Direct US stimulation of the hindlimb was also studied. To test peripheral effects, rat blood glucose levels were measured while applying US near the liver.

No short-term motor modulation was visible (95% confidence interval: -3.5% to +5.1% forelimb, -3.8% to +5.5% hindlimb). There was significant long-term (minutes-order) suppression (95% confidence interval: -3.7% to -10.8% forelimb, -3.8% to -11.9% hindlimb). This suppression may be due to the considerable heating (+1.8°C between US
on-US conditions); effects of heat and US were not separable in this experiment. US directly evoked hindlimb and scrotum movements in some sessions. This required a long interval, at least 3 seconds between US bursts. Movement could be evoked with much shorter pulses than used in literature (3 ms). The EMG latency (10 ms) was compatible with activation of corticospinal neurons. The glucose modulation test showed a strong increase in a few trials, but across all trials found no significant effect.

The single motor response and the long refractory period together suggest that only the beginning of the US burst had a stimulatory effect. This would explain the lack of short-term modulation, and suggests future work with shorter pulses could better explore the missing forelimb response. During the refractory period there was no change in the electrically-evoked response, which suggests the US stimulation mechanism is independent of normal brain activity. These results challenge the literature-standard protocols and provide new insights on the unknown mechanism.
ContributorsGulick, Daniel Withers (Author) / Kleim, Jeffrey (Thesis advisor) / Towe, Bruce (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Herman, Richard (Committee member) / Helms Tillery, Steven (Committee member) / Arizona State University (Publisher)
Created2015
157362-Thumbnail Image.png
Description
Vagus nerve stimulation (VNS) has shown benefits beyond its original therapeutic application, though there is a lack of research into these benefits in healthy and athletic populations. To address this gap in the VNS literature, the present study addresses the feasibility and possible efficacy of transcutaneous VNS (tVNS) in improving

Vagus nerve stimulation (VNS) has shown benefits beyond its original therapeutic application, though there is a lack of research into these benefits in healthy and athletic populations. To address this gap in the VNS literature, the present study addresses the feasibility and possible efficacy of transcutaneous VNS (tVNS) in improving performance and various biometrics during two athletic tasks: golf tee shots and baseball pitching. Performance, cortical dynamics, anxiety measures, muscle excitation, and heart rate characteristics were assessed before and after stimulation using electroencephalography (EEG), the State-Trait Anxiety Inventory (STAI), and electrocardiography (ECG) during the baseball and golf tasks as well as electromyography (EMG) for muscle excitation in the golf participants. Golfers exhibited increased perceived quality of each repetition (independent from outcome) and an improvement in state and trait anxiety after stimulation. Golfers in the active stimulation group also showed a greater reduction in right upper trapezius muscle excitation when compared to the sham stimulation group. Baseball pitchers exhibited an increase in perceived quality of each repetition (independent from outcome) after active stimulation but not an improvement of state and trait anxiety. No significant effects of stimulation Priming, stimulation Type, or the Priming×Type interaction were seen in heart rate, EEG, or performance in the golf or baseball tasks. The present study supports the feasibility of tVNS in sports and athletic tasks and suggests the need for future research to investigate further into the effects of tVNS on the performance, psychologic, and physiologic attributes of athletes during competition.
ContributorsLindley, Kyle (Author) / Tyler, William J (Thesis advisor) / Wyckoff, Sarah (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
156873-Thumbnail Image.png
Description
Sleep is an essential human function. Modern day society has made it so that sleep is prioritized less and less. Professionals in critical positions such as doctors, nurses, and emergency medical technicians can often have hectic schedules that are unforgiving toward sleep due to the increase in shift work that

Sleep is an essential human function. Modern day society has made it so that sleep is prioritized less and less. Professionals in critical positions such as doctors, nurses, and emergency medical technicians can often have hectic schedules that are unforgiving toward sleep due to the increase in shift work that dominates these fields. Sleep deficits can have detrimental effects on one’s psyche and mood. Depression and anxiety both have high comorbidity rates with insomnia because of sleeping deficits. Transdermal Electrical Nerve Stimulation (TENS) offers a potential solution to improving sleep quality and mood by modulating the ascending reticular activating system (RAS). This system starts in the anterior portion of the head with trigeminal nerve branches and is stimulated using a 500-550 Hz waveform.

In this experiment Positive Affect and Negative Affect Schedule (PANAS) scores are recorded daily to monitor mood differences between pre and post treatment (TENS vs Sham). PANAS scores were found to be insignificant between groups. Pittsburgh Sleep Quality Index (PSQI), and Fitbit were chosen to study perceived sleep, and objective sleep. Both PSQI, and Fitbit found insignificant differences between TENS and Sham. Finally, the Beck Depression and Beck Anxiety Inventories were administered weekly to determine if there are immediate changes to depressive and anxiety symptom, after a week of treatment (TENS vs Sham). A significant difference was found between the pre and post of the TENS treatment group. The TENS group was not found to be significantly different from Sham, potentially the result of a placebo effect. These results were found with n=10 participants in the TENS treatment group and n=6 in the sham group.
ContributorsUdave, Ceasar (Author) / Tyler, William J (Thesis advisor) / Buneo, Christopher (Committee member) / Wyckoff, Sarah (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
ContributorsZaleski, Kimberly (Contributor) / Kazarian, Trevor (Performer) / Ryan, Russell (Performer) / IN2ATIVE (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-28
ContributorsDelaney, Erin (Performer) / Novak, Gail (Pianist) (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18