Matching Items (2)
Filtering by

Clear all filters

151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
171816-Thumbnail Image.png
Description
This work has improved the quality of the solution to the sparse rewards problemby combining reinforcement learning (RL) with knowledge-rich planning. Classical methods for coping with sparse rewards during reinforcement learning modify the reward landscape so as to better guide the learner. In contrast, this work combines RL with a planner in order

This work has improved the quality of the solution to the sparse rewards problemby combining reinforcement learning (RL) with knowledge-rich planning. Classical methods for coping with sparse rewards during reinforcement learning modify the reward landscape so as to better guide the learner. In contrast, this work combines RL with a planner in order to utilize other information about the environment. As the scope for representing environmental information is limited in RL, this work has conflated a model-free learning algorithm – temporal difference (TD) learning – with a Hierarchical Task Network (HTN) planner to accommodate rich environmental information in the algorithm. In the perpetual sparse rewards problem, rewards reemerge after being collected within a fixed interval of time, culminating in a lack of a well-defined goal state as an exit condition to the problem. Incorporating planning in the learning algorithm not only improves the quality of the solution, but the algorithm also avoids the ambiguity of incorporating a goal of maximizing profit while using only a planning algorithm to solve this problem. Upon occasionally using the HTN planner, this algorithm provides the necessary tweak toward the optimal solution. In this work, I have demonstrated an on-policy algorithm that has improved the quality of the solution over vanilla reinforcement learning. The objective of this work has been to observe the capacity of the synthesized algorithm in finding optimal policies to maximize rewards, awareness of the environment, and the awareness of the presence of other agents in the vicinity.
ContributorsNandan, Swastik (Author) / Pavlic, Theodore (Thesis advisor) / Das, Jnaneshwar (Thesis advisor) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2022