Matching Items (4)
Filtering by

Clear all filters

151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
Description
ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work

ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work together toward the acceptance and success of a composer's music within an instrument community. For the flute, one such composer is Daniel Dorff (b. 1956). Dorff, a Philadelphia-based composer, has written for symphony orchestra, clarinet, contrabassoon, and others; however, his award-winning works for flute and piccolo are earning him much recognition. He has written works for such illustrious flutists as Mimi Stillman, Walfrid Kujala, and Gary Schocker; his flute works have been recorded by Laurel Zucker, Pamela Youngblood and Lois Bliss Herbine; and his pieces have been performed and premiered at each of the National Flute Association Conventions from 2004 to 2009. Despite this success, little has been written about Dorff's life, compositional style, and contributions to the flute repertory. In order to further promote the flute works of Daniel Dorff, the primary focus of this study is the creation of a compact disc recording of Dorff's most prominent works for flute: April Whirlwind, 9 Walks Down 7th Avenue, both for flute and piano, and Nocturne Caprice for solo flute. In support of this recording, the study also provides biographical information regarding Daniel Dorff, discusses his compositional methods and ideology, and presents background information, description, and performance notes for each piece. Interviews with Daniel Dorff regarding biographical and compositional details serve as the primary source for this document. Suggestions for the performance of the three flute works were gathered through interviews with prominent flutists who have studied and performed Dorff's pieces. Additional performance suggestions for Nocturne Caprice were gathered through a coaching session between the author and the composer. This project is meant to promote the flute works of Daniel Dorff and to help establish their role in the standard flute repertory.
ContributorsRich, Angela Marie (Contributor) / Novak, Gail (Pianist) (Performer) / Buck, Elizabeth Y (Thesis advisor) / Hill, Gary W. (Committee member) / Holbrook, Amy (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2010
154214-Thumbnail Image.png
Description
Contact angle goniometer is one of the most common tools in surfaces science. Since the introduction of this instrument by Fox and Zisman1 in 1950, dispensing the liquid using a syringe has generated pendant drops. However, using such approach at conditions significantly deviating from standard pressure and temperature would

Contact angle goniometer is one of the most common tools in surfaces science. Since the introduction of this instrument by Fox and Zisman1 in 1950, dispensing the liquid using a syringe has generated pendant drops. However, using such approach at conditions significantly deviating from standard pressure and temperature would require an elaborate and costly fluidic system. To this end, this thesis work introduces alternative design of a goniometer capable of contact angle measurement at wide pressure and temperature range. In this design, pendant droplets are not dispensed through a pipette but are generated through localized condensation on a tip of a preferentially cooled small metal wire encapsulated within a thick thermal insulator layer. This thesis work covers experimental study of the relation between the geometry of the condensation-based pendant drop generator geometry and subcooling, and growth rate of drops of representative high (water) and low (pentane) surface tension liquids. Several routes that the generated pendant drops can be used to measure static and dynamic contact angles of the two liquids on common substrates well as nanoengineered superhydrophobic and omniphobic surfaces are demonstrated.
ContributorsMohan, Ajay Roopesh (Author) / Rykaczewski, Konrad (Thesis advisor) / Herrmann, Marcus (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2015
Description
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) has enabled the determination of damage-free protein structures at ambient temperatures and of reaction intermediate species with time resolution on the order of hundreds of femtoseconds. However, currently available XFEL facility X-ray pulse structures waste the majority of continuously injected

Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) has enabled the determination of damage-free protein structures at ambient temperatures and of reaction intermediate species with time resolution on the order of hundreds of femtoseconds. However, currently available XFEL facility X-ray pulse structures waste the majority of continuously injected crystal sample, requiring a large quantity (up to grams) of crystal sample to solve a protein structure. Furthermore, mix-and-inject serial crystallography (MISC) at XFEL facilities requires fast mixing for short (millisecond) reaction time points (𝑡"), and current sample delivery methods have complex fabrication and assembly requirements.

To reduce sample consumption during SFX, a 3D printed T-junction for generating segmented aqueous-in-oil droplets was developed. The device surface properties were characterized both with and without a surface coating for improved droplet generation stability. Additionally, the droplet generation frequency was characterized. The 3D printed device interfaced with gas dynamic virtual nozzles (GDVNs) at the Linac Coherent Light Source (LCLS), and a relationship between the aqueous phase volume and the resulting crystal hit rate was developed. Furthermore, at the European XFEL (EuXFEL) a similar quantity and quality of diffraction data was collected for segmented sample delivery using ~60% less sample volume than continuous injection, and a structure of 3-deoxy-D-manno- octulosonate 8-phosphate synthase (KDO8PS) delivered by segmented injection was solved that revealed new structural details to a resolution of 2.8 Å.

For MISC, a 3D printed hydrodynamic focusing mixer for fast mixing by diffusion was developed to automate device fabrication and simplify device assembly. The mixer was characterized with numerical models and fluorescence microscopy. A variety of devices were developed to reach reaction intermediate time points, 𝑡", on the order of 100 – 103 ms. These devices include 3D printed mixers coupled to glass or 3D printed GDVNs and two designs of mixers with GDVNs integrated into the one device. A 3D printed mixer coupled to a glass GDVN was utilized at LCLS to study the oxidation of cytochrome c oxidase (CcO), and a structure of the CcO Pr intermediate was determined at 𝑡" = 8 s.
ContributorsEchelmeier, Austin (Author) / Ros, Alexandra (Thesis advisor) / Levitus, Marcia (Committee member) / Weierstall, Uwe (Committee member) / Arizona State University (Publisher)
Created2019