Matching Items (388)
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
152074-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized

Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized by the translational and rotational velocity and effective diffusivity. In a uniform environment the long-time motion of a motor can be fully characterized by the effective diffusivity. In this work it is shown that when motors possess both translational and rotational velocity the motor transitions from a short-time diffusivity to a long-time diffusivity at a time of pi/w. The short-time diffusivities are two to three orders of magnitude larger than the diffusivity of a Brownian sphere of the same size, increase linearly with concentration, and scale as v^2/2w. The measured long-time diffusivities are five times lower than the short-time diffusivities, scale as v^2/{2Dr [1 + (w/Dr )^2]}, and exhibit a maximum as a function of concentration. The variation of a colloid's velocity and effective diffusivity to its local environment (e.g. fuel concentration) suggests that the motors can accumulate in a bounded system, analogous to biological chemokinesis. Chemokinesis of organisms is the non-uniform equilibrium concentration that arises from a bounded random walk of swimming organisms in a chemical concentration gradient. In non-swimming organisms we term this response diffusiokinesis. We show that particles that migrate only by Brownian thermal motion are capable of achieving non-uniform pseudo equilibrium distribution in a diffusivity gradient. The concentration is a result of a bounded random-walk process where at any given time a larger percentage of particles can be found in the regions of low diffusivity than in regions of high diffusivity. Individual particles are not trapped in any given region but at equilibrium the net flux between regions is zero. For Brownian particles the gradient in diffusivity is achieved by creating a viscosity gradient in a microfluidic device. The distribution of the particles is described by the Fokker-Planck equation for variable diffusivity. The strength of the probe concentration gradient is proportional to the strength of the diffusivity gradient and inversely proportional to the mean probe diffusivity in the channel in accordance with the no flux condition at steady state. This suggests that Brownian colloids, natural or synthetic, will concentrate in a bounded system in response to a gradient in diffusivity and that the magnitude of the response is proportional to the magnitude of the gradient in diffusivity divided by the mean diffusivity in the channel.
ContributorsMarine, Nathan Arasmus (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald J (Committee member) / Frakes, David (Committee member) / Phelan, Patrick E (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
153936-Thumbnail Image.png
Description
Presented is a study on the chemotaxis reaction process and its relation with flow topology. The effect of coherent structures in turbulent flows is characterized by studying nutrient uptake and the advantage that is received from motile bacteria over other non-motile bacteria. Variability is found to be dependent on the

Presented is a study on the chemotaxis reaction process and its relation with flow topology. The effect of coherent structures in turbulent flows is characterized by studying nutrient uptake and the advantage that is received from motile bacteria over other non-motile bacteria. Variability is found to be dependent on the initial location of scalar impurity and can be tied to Lagrangian coherent structures through recent advances in the identification of finite-time transport barriers. Advantage is relatively small for initial nutrient found within high stretching regions of the flow, and nutrient within elliptic structures provide the greatest advantage for motile species. How the flow field and the relevant flow topology lead to such a relation is analyzed.
ContributorsJones, Kimberly (Author) / Tang, Wenbo (Thesis advisor) / Kang, Yun (Committee member) / Jones, Donald (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsBolari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsOftedahl, Paul (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-29
ContributorsMarshall, Kimberly (Performer) / Meszler, Alexander (Performer) / Yatso, Toby (Narrator) / ASU Library. Music Library (Publisher)
Created2018-09-16
155243-Thumbnail Image.png
Description
A numerical study of chemotaxis in 3D turbulence is presented here. Direct Numerical

Simulation were used to calculate the nutrient uptake for both motile and non-motile bacterial

species and by applying the dynamical systems theory the effect of flow topology on the

variability of chemotaxis is analyzed. It is done

A numerical study of chemotaxis in 3D turbulence is presented here. Direct Numerical

Simulation were used to calculate the nutrient uptake for both motile and non-motile bacterial

species and by applying the dynamical systems theory the effect of flow topology on the

variability of chemotaxis is analyzed. It is done by injecting a highly localized patch of nutrient

in the turbulent flow, and analyzing the evolution of reaction associated with the observed

high and low stretching regions. The Gaussian nutrient patch is released at different locations

and the corresponding nutrient uptake is obtained. The variable stretching characteristics of

the flow is depicted by Lagrangian Coherent Structures and the roles they play in affecting the

uptake are analyzed. The Lagrangian Coherent Structures are quantified by the Finite Time

Lyapunov Exponents which is a measure of the average stretching experienced by the flow in

finite time. It is found that in high stretching regions, the motile bacteria are attracted to the

nutrient patch very quickly, but also dispersed quickly; whereas in low stretching regions the

bacteria respond slower towards the nutrient patch. However the total uptake is intricately

determined by stretching history. These reaction characteristics are reflected in the several

realizations of simulations. This helps in understanding turbulence intensity and how it affects

the uptake of the nutrient.
ContributorsGeorge, Jino (Author) / Tang, Wenbo (Thesis advisor) / Peet, Yulia (Thesis advisor) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2017
ContributorsTaylor, Karen Stephens (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-21
ContributorsCramer, Craig (Performer) / ASU Library. Music Library (Publisher)
Created1997-02-16
ContributorsMarshall, Kimberly (Performer) / ASU Library. Music Library (Publisher)
Created2019-03-17