Matching Items (614)
Filtering by

Clear all filters

151690-Thumbnail Image.png
Description
Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems.

Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems. In particular, the focus is on an information theoretic analysis for P2P systems with synchronization errors and developing new signaling solutions for several asynchronous cooperative communication systems. The first part of the dissertation presents several bounds on the capacity of the P2P systems with synchronization errors. First, binary insertion and deletion channels are considered where lower bounds on the mutual information between the input and output sequences are computed for independent uniformly distributed (i.u.d.) inputs. Then, a channel suffering from both synchronization errors and additive noise is considered as a serial concatenation of a synchronization error-only channel and an additive noise channel. It is proved that the capacity of the original channel is lower bounded in terms of the synchronization error-only channel capacity and the parameters of both channels. On a different front, to better characterize the deletion channel capacity, the capacity of three independent deletion channels with different deletion probabilities are related through an inequality resulting in the tightest upper bound on the deletion channel capacity for deletion probabilities larger than 0.65. Furthermore, the first non-trivial upper bound on the 2K-ary input deletion channel capacity is provided by relating the 2K-ary input deletion channel capacity with the binary deletion channel capacity through an inequality. The second part of the dissertation develops two new relaying schemes to alleviate asynchronism issues in cooperative communications. The first one is a single carrier (SC)-based scheme providing a spectrally efficient Alamouti code structure at the receiver under flat fading channel conditions by reducing the overhead needed to overcome the asynchronism and obtain spatial diversity. The second one is an orthogonal frequency division multiplexing (OFDM)-based approach useful for asynchronous cooperative systems experiencing excessive relative delays among the relays under frequency-selective channel conditions to achieve a delay diversity structure at the receiver and extract spatial diversity.
ContributorsRahmati, Mojtaba (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2013
Description
Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from

Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from three different composers. The resulting works are Seres Imaginarios 3 by Luis Cardoso; Delirio Barroco by Tiago Derrica; and Memória by Pedro Faria Gomes. In an effort to submit these new works for inclusion into mainstream performance literature, the author has recorded these works on compact disc. This document includes interview transcripts with each composer, providing first-person discussion of each composition, as well as detailed biographical information on each composer. To provide context, the author has included a brief discussion on Portuguese folk music, and in particular, the role that the clarinet plays in Portuguese folk music culture.
ContributorsFerreira, Wesley (Contributor) / Spring, Robert S (Thesis advisor) / Bailey, Wayne (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Schuring, Martin (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
152897-Thumbnail Image.png
Description
In-band full-duplex relays are envisioned as promising solution to increase the throughput of next generation wireless communications. Full-duplex relays, being able to transmit and receive at same carrier frequency, offers increased spectral efficiency compared to half-duplex relays that transmit and receive at different frequencies or times. The practical implementation of

In-band full-duplex relays are envisioned as promising solution to increase the throughput of next generation wireless communications. Full-duplex relays, being able to transmit and receive at same carrier frequency, offers increased spectral efficiency compared to half-duplex relays that transmit and receive at different frequencies or times. The practical implementation of full-duplex relays is limited by the strong self-interference caused by the coupling of relay's own transit signals to its desired received signals. Several techniques have been proposed in literature to mitigate the relay self-interference. In this thesis, the performance of in-band full-duplex multiple-input multiple-output (MIMO) relays is considered in the context of simultaneous communications and channel estimation. In particular, adaptive spatial transmit techniques is considered to protect the full-duplex radio's receive array. It is assumed that relay's transmit and receive antenna phase centers are physically distinct. This allows the radio to employ adaptive spatial transmit and receive processing to mitigate self-interference.

The performance of this protection is dependent upon numerous factors, including channel estimation accuracy, which is the focus of this thesis. In particular, the concentration is on estimating the self-interference channel. A novel approach of simultaneous signaling to estimate the self-interference channel in MIMO full-duplex relays is proposed. To achieve this simultaneous communications

and channel estimation, a full-rank pilot signal at a reduced relative power is transmitted simultaneously with a low rank communication waveform. The self-interference mitigation is investigated in the context of eigenvalue spread of spatial relay receive co-variance matrix. Performance is demonstrated by using simulations,

in which orthogonal-frequency division-multiplexing communications and pilot sequences are employed.
ContributorsSekhar, Kishore Kumar (Author) / Bliss, Daniel W (Thesis advisor) / Kitchen, Jennifer (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2014
150398-Thumbnail Image.png
Description
Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely

Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely time-dispersive channels. However, the performance of OFDM systems over UWA channels significantly deteriorates due to severe intercarrier interference (ICI) resulting from rapid time variations of the channel. With the motivation of developing enabling techniques for OFDM over UWA channels, the major contributions of this thesis include (1) two effective frequencydomain equalizers that provide general means to counteract the ICI; (2) a family of multiple-resampling receiver designs dealing with distortions caused by user and/or path specific Doppler scaling effects; (3) proposal of using orthogonal frequency division multiple access (OFDMA) as an effective multiple access scheme for UWA communications; (4) the capacity evaluation for single-resampling versus multiple-resampling receiver designs. All of the proposed receiver designs have been verified both through simulations and emulations based on data collected in real-life UWA communications experiments. Particularly, the frequency domain equalizers are shown to be effective with significantly reduced pilot overhead and offer robustness against Doppler and timing estimation errors. The multiple-resampling designs, where each branch is tasked with the Doppler distortion of different paths and/or users, overcome the disadvantages of the commonly-used single-resampling receivers and yield significant performance gains. Multiple-resampling receivers are also demonstrated to be necessary for UWA OFDMA systems. The unique design effectively mitigates interuser interference (IUI), opening up the possibility to exploit advanced user subcarrier assignment schemes. Finally, the benefits of the multiple-resampling receivers are further demonstrated through channel capacity evaluation results.
ContributorsTu, Kai (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsBurton, Charlotte (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-08
ContributorsDruesedow, Elizabeth (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-07
Description
This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The

This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The third and final piece, Duality in the Eye of a Bovine, was written by Kurt Mehlenbacher and is for B-flat clarinet, bass clarinet, and piano. In addition to the performance guide, this document also includes background information and program notes for the compositions, as well as composer biographical information, a list of other works featuring the clarinet by each composer, and transcripts of composer and performer interviews. This document is accompanied by a recording of the three pieces.
ContributorsPoupard, Caitlin Marie (Author) / Spring, Robert (Thesis advisor) / Gardner, Joshua (Thesis advisor) / Hill, Gary (Committee member) / Oldani, Robert (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016
Description
The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for

The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for Two Clarinets, Reggie Berg’s Funkalicious for Clarinet and Piano, Rusty Banks’ Star Juice for Clarinet and Fixed Media, and Chris Malloy’s A Celestial Breath for Clarinet and Electronics. In addition to the musical commissions, this project also includes interviews with the composers indicating how they wrote these works and what their influences were, along with any information pertinent to the performer, professional recordings of each piece, as well as performance notes and suggestions.
ContributorsCase-Ruchala, Celeste Ann (Contributor) / Gardner, Joshua (Thesis advisor) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Rogers, Rodney (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016
ContributorsClements, Katrina (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-15
ContributorsClifton-Armenta, Tyler (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-16