Matching Items (9)
Filtering by

Clear all filters

151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
Description
Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from

Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from three different composers. The resulting works are Seres Imaginarios 3 by Luis Cardoso; Delirio Barroco by Tiago Derrica; and Memória by Pedro Faria Gomes. In an effort to submit these new works for inclusion into mainstream performance literature, the author has recorded these works on compact disc. This document includes interview transcripts with each composer, providing first-person discussion of each composition, as well as detailed biographical information on each composer. To provide context, the author has included a brief discussion on Portuguese folk music, and in particular, the role that the clarinet plays in Portuguese folk music culture.
ContributorsFerreira, Wesley (Contributor) / Spring, Robert S (Thesis advisor) / Bailey, Wayne (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Schuring, Martin (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
153236-Thumbnail Image.png
Description
A series of pyrite thin films were synthesized using a novel sequential evaporation

technique to study the effects of substrate temperature on deposition rate and micro-structure of

the deposited material. Pyrite was deposited in a monolayer-by-monolayer fashion using

sequential evaporation of Fe under high vacuum, followed by sulfidation at high S pressures

(typically >

A series of pyrite thin films were synthesized using a novel sequential evaporation

technique to study the effects of substrate temperature on deposition rate and micro-structure of

the deposited material. Pyrite was deposited in a monolayer-by-monolayer fashion using

sequential evaporation of Fe under high vacuum, followed by sulfidation at high S pressures

(typically > 1 mTorr to 1 Torr). Thin films were synthesized using two different growth processes; a

one-step process in which a constant growth temperature is maintained throughout growth, and a

three-step process in which an initial low temperature seed layer is deposited, followed by a high

temperature layer, and then finished with a low temperature capping layer. Analysis methods to

analyze the properties of the films included Glancing Angle X-Ray Diffraction (GAXRD),

Rutherford Back-scattering Spectroscopy (RBS), Transmission Electron Microscopy (TEM),

Secondary Ion Mass Spectroscopy (SIMS), 2-point IV measurements, and Hall effect

measurements. Our results show that crystallinity of the pyrite thin film improves and grain size

increases with increasing substrate temperature. The sticking coefficient of Fe was found to

increase with increasing growth temperature, indicating that the Fe incorporation into the growing

film is a thermally activated process.
ContributorsWertheim, Alex (Author) / Newman, Nathan (Thesis advisor) / Singh, Rakesh (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2014
154002-Thumbnail Image.png
Description
The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the

The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the deposit are andesitic pyroclastic materials, which have been hydrothermally altered into argillic clay zones. High-sulfidation (acidic) alteration produced clay zones with elevated pyrite (18%), illite-smectite (I-S) (70% illite), elemental sulfur, kaolinite and carbonates. Low-sulfidation alteration at neutral pH generated clay zones with lower pyrite concentrations pyrite (4-6%), the mixed-layered I-S clay rectorite (R1, I-S) and quartz.

Antibacterial susceptibility testing reveals that hydrated clays containing pyrite and I-S are effective at killing (100%) of the model pathogens tested (E. coli and S. epidermidis) when pH (< 4.2) and Eh (> 450 mV) promote pyrite oxidation and mineral dissolution, releasing > 1 mM concentrations of Fe2+, Fe3+ and Al3+. However, certain oxidized clay zones containing no pyrite still inhibited bacterial growth. These clays buffered solutions to low pH (< 4.7) and oxidizing Eh (> 400 mV) conditions, releasing lower amounts (< 1 mM) of Fe and Al. The presence of carbonate in the clays eliminated antibacterial activity due to increases in pH, which lower pyrite oxidation and mineral dissolution rates.

The antibacterial mechanism of these natural clays was explored using metal toxicity and genetic assays, along with advanced bioimaging techniques. Antibacterial clays provide a continuous reservoir of Fe2+, Fe3+ and Al3+ that synergistically attack pathogens while generating hydrogen peroxide (H2O¬2). Results show that dissolved Fe2+ and Al3+ are adsorbed to bacterial envelopes, causing protein misfolding and oxidation in the outer membrane. Only Fe2+ is taken up by the cells, generating oxidative stress that damages DNA and proteins. Excess Fe2+ oxidizes inside the cell and precipitates Fe3+-oxides, marking the sites of hydroxyl radical (•OH) generation. Recognition of this novel geochemical antibacterial process should inform designs of new mineral based antibacterial agents and could provide a new economic industry for such clays.
ContributorsMorrison, Keith D (Author) / Williams, Lynda B (Thesis advisor) / Williams, Stanley N (Thesis advisor) / Misra, Rajeev (Committee member) / Shock, Everett (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2015
154547-Thumbnail Image.png
Description
Pyrite is a 0.95 eV bandgap semiconductor which is purported to have great potential in widespread, low–cost photovoltaic cells. A thorough material selection process was used in the design of a pyrite sequential vapor deposition chamber aimed at reducing and possibly eliminating contamination during thin film growth. The design process

Pyrite is a 0.95 eV bandgap semiconductor which is purported to have great potential in widespread, low–cost photovoltaic cells. A thorough material selection process was used in the design of a pyrite sequential vapor deposition chamber aimed at reducing and possibly eliminating contamination during thin film growth. The design process focused on identifying materials that do not produce volatile components when exposed to high temperatures and high sulfur pressures. Once the materials were identified and design was completed, the ultra–high vacuum growth system was constructed and tested.

Pyrite thin films were deposited using the upgraded sequential vapor deposition chamber by varying the substrate temperature from 250°C to 420°C during deposition, keeping sulfur pressure constant at 1 Torr. Secondary Ion Mass Spectrometry (SIMS) results showed that all contaminants in the films were reduced in concentration by orders of magnitude from those grown with the previous system. Characterization techniques of Rutherford Back–scattering Spectrometry (RBS), X–Ray Diffraction (XRD), Raman Spectroscopy, Optical Profilometry and UV/Vis/Near–IR Spectroscopy were performed on the deposited thin films. The results indicate that stoichiometric ratio of S:Fe, structural–quality (epitaxy), optical roughness and percentage of pyrite in the deposited thin films improve with increase in deposition temperature. A Tauc plot of the optical measurements indicates that the pyrite thin films have a bandgap of 0.94 eV.
ContributorsWalimbe, Aditya (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Arizona State University (Publisher)
Created2016
Description
This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The

This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The third and final piece, Duality in the Eye of a Bovine, was written by Kurt Mehlenbacher and is for B-flat clarinet, bass clarinet, and piano. In addition to the performance guide, this document also includes background information and program notes for the compositions, as well as composer biographical information, a list of other works featuring the clarinet by each composer, and transcripts of composer and performer interviews. This document is accompanied by a recording of the three pieces.
ContributorsPoupard, Caitlin Marie (Author) / Spring, Robert (Thesis advisor) / Gardner, Joshua (Thesis advisor) / Hill, Gary (Committee member) / Oldani, Robert (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016
Description
The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for

The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for Two Clarinets, Reggie Berg’s Funkalicious for Clarinet and Piano, Rusty Banks’ Star Juice for Clarinet and Fixed Media, and Chris Malloy’s A Celestial Breath for Clarinet and Electronics. In addition to the musical commissions, this project also includes interviews with the composers indicating how they wrote these works and what their influences were, along with any information pertinent to the performer, professional recordings of each piece, as well as performance notes and suggestions.
ContributorsCase-Ruchala, Celeste Ann (Contributor) / Gardner, Joshua (Thesis advisor) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Rogers, Rodney (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016
154724-Thumbnail Image.png
Description
Measurements of the geometrical magnetoresistance of a conventional semiconductor, gallium arsenide (GaAs), and a more recently developed semiconductor, iron pyrite (FeS2) were measured in the Corbino disc geometry as a function of magnetic field to determine the carrier mobility (μm). These results were compared with measurements of the Hall mobility

Measurements of the geometrical magnetoresistance of a conventional semiconductor, gallium arsenide (GaAs), and a more recently developed semiconductor, iron pyrite (FeS2) were measured in the Corbino disc geometry as a function of magnetic field to determine the carrier mobility (μm). These results were compared with measurements of the Hall mobility (μH) made in the Van der Pauw configuration. The scattering coefficient (ξ), defined as the ratio between magnetoresistance and Hall mobility (μm/μH), was determined experimentally for GaAs and natural pyrite from 300 K to 4.2 K. The effect of contact resistance and heating on the measurement accuracy is discussed.
ContributorsRavi, Aditya (Author) / Newman, Nathan (Thesis advisor) / Singh, Rakesh (Committee member) / Ferry, David K. (Committee member) / Arizona State University (Publisher)
Created2016
Description
ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work

ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work together toward the acceptance and success of a composer's music within an instrument community. For the flute, one such composer is Daniel Dorff (b. 1956). Dorff, a Philadelphia-based composer, has written for symphony orchestra, clarinet, contrabassoon, and others; however, his award-winning works for flute and piccolo are earning him much recognition. He has written works for such illustrious flutists as Mimi Stillman, Walfrid Kujala, and Gary Schocker; his flute works have been recorded by Laurel Zucker, Pamela Youngblood and Lois Bliss Herbine; and his pieces have been performed and premiered at each of the National Flute Association Conventions from 2004 to 2009. Despite this success, little has been written about Dorff's life, compositional style, and contributions to the flute repertory. In order to further promote the flute works of Daniel Dorff, the primary focus of this study is the creation of a compact disc recording of Dorff's most prominent works for flute: April Whirlwind, 9 Walks Down 7th Avenue, both for flute and piano, and Nocturne Caprice for solo flute. In support of this recording, the study also provides biographical information regarding Daniel Dorff, discusses his compositional methods and ideology, and presents background information, description, and performance notes for each piece. Interviews with Daniel Dorff regarding biographical and compositional details serve as the primary source for this document. Suggestions for the performance of the three flute works were gathered through interviews with prominent flutists who have studied and performed Dorff's pieces. Additional performance suggestions for Nocturne Caprice were gathered through a coaching session between the author and the composer. This project is meant to promote the flute works of Daniel Dorff and to help establish their role in the standard flute repertory.
ContributorsRich, Angela Marie (Contributor) / Novak, Gail (Pianist) (Performer) / Buck, Elizabeth Y (Thesis advisor) / Hill, Gary W. (Committee member) / Holbrook, Amy (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2010