Matching Items (664)
Filtering by

Clear all filters

ContributorsWasbotten, Leia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
151635-Thumbnail Image.png
Description
Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and

Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and poet Willa Cather (1873-1947). Larsen has produced two song cycles on works from Cather's substantial output of fiction: one based on Cather's short story, "Eric Hermannson's Soul," titled Margaret Songs: Three Songs from Willa Cather (1996); and later, My Antonia (2000), based on Cather's novel of the same title. In Margaret Songs, Cather's poetry and short stories--specifically the character of Margaret Elliot--combine with Larsen's unique compositional style to create a surprising collaboration. This study explores how Larsen in these songs delves into the emotional and psychological depths of Margaret's character, not fully formed by Cather. It is only through Larsen's music and Cather's poetry that Margaret's journey through self-discovery and love become fully realized. This song cycle is a glimpse through the eyes of two prominent female artists on the societal pressures placed upon Margaret's character, many of which still resonate with women in today's culture. This study examines the work Margaret Songs by discussing Willa Cather, her musical influences, and the conditions surrounding the writing of "Eric Hermannson's Soul." It looks also into Cather's influence on Libby Larsen and the commission leading to Margaret Songs. Finally, a description of the musical, dramatic, and textual content of the songs completes this interpretation of the interactions of Willa Cather, Libby Larsen, and the character of Margaret Elliot.
ContributorsMcLain, Christi Marie (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Holbrook, Amy (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151660-Thumbnail Image.png
Description
Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility

Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility of such music and to encourage similar studies of Puerto Rican music. This study focuses on the music of Héctor Campos Parsi (1922-1998), one of the most prominent composers of the 20th century in Puerto Rico. After an overview of the historical background of music on the island and the biography of the composer, four works from his art song repertoire are given for detailed examination. A product of this study is the first corrected edition of his cycles Canciones de Cielo y Agua, Tres Poemas de Corretjer, Los Paréntesis, and the song Majestad Negra. These compositions date from 1947 to 1959, and reflect both the European and nationalistic writing styles of the composer during this time. Data for these corrections have been obtained from the composer's manuscripts, published and unpublished editions, and published recordings. The corrected scores are ready for publication and a compact disc of this repertoire, performed by soprano Melliangee Pérez and the author, has been recorded to bring to life these revisions. Despite the best intentions of the author, the various copyright issues have yet to be resolved. It is hoped that this document will provide the foundation for a resolution and that these important works will be available for public performance and study in the near future.
ContributorsRodríguez Morales, Luis F., 1980- (Author) / Campbell, Andrew (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Kopta, Anne (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsYi, Joyce (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-22
152842-Thumbnail Image.png
Description
Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these binder systems. Two main strategies for enhancing this sustainability are explored in this work: (i) the use of high volume limestone in combination with other alternative cementitious materials to decrease the portland cement quantity in concrete and (ii) the use of geopolymers as the binder phase in concrete. The first phase of the work investigates the use of fine limestone as cement replacement from the perspective of hydration, strength development, and pore structure. The nature of the potential synergistic benefit of limestone and alumina will be explored. The second phase will focus on the rheological characterization of these materials in the fresh state, as well as a more general investigation of the rheological characterization of suspensions. The results of this work indicate several key ideas. (i) There is a potential synergistic benefit for strength, hydration, and pore structure by using alumina and in portland limestone cements, (ii) the limestone in these systems is shown to react to some extent, and fine limestone is shown to accelerate hydration, (iii) rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, interparticle forces, surface area of the particles present, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended, and (iv) stress plateau method is proposed for the determination of rheological properties of concentrated suspensions, as it more accurately predicts apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions.
ContributorsVance, Kirk (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
149742-Thumbnail Image.png
Description
Temporary bonding-debonding of flexible plastic substrates to rigid carriers may facilitate effective substrate handling by automated tools for manufacture of flexible microelectronics. The primary challenges in implementing practical temporary bond-debond technology originate from the stress that is developed during high temperature processing predominately through thermal-mechanical property mismatches between carrier, adhesive

Temporary bonding-debonding of flexible plastic substrates to rigid carriers may facilitate effective substrate handling by automated tools for manufacture of flexible microelectronics. The primary challenges in implementing practical temporary bond-debond technology originate from the stress that is developed during high temperature processing predominately through thermal-mechanical property mismatches between carrier, adhesive and substrate. These stresses are relaxed through bowing of the bonded system (substrate-adhesive-carrier), which causes wafer handling problems, or through delamination of substrate from rigid carrier. Another challenge inherent to flexible plastic substrates and linked to stress is their dimensional instability, which may manifest itself in irreversible deformation upon heating and cooling cycles. Dimensional stability is critical to ensure precise registration of different layers during photolithography. The global objective of this work is to determine comprehensive experimental characterization and develop underlying fundamental engineering concept that could enable widespread adoption and scale-up of temporary bonding processing protocols for flexible microelectronics manufacturing. A series of carriers with different coefficient of thermal expansion (CTE), modulus and thickness were investigated to correlate the thermo-mechanical properties of carrier with deformation behavior of bonded systems. The observed magnitude of system bow scaled with properties of carriers according to well-established Stoney's equation. In addition, rheology of adhesive impacted the deformation of bonded system. In particular, distortion-bowing behavior correlated directly with the relative loss factor of adhesive and flexible plastic substrate. Higher loss factor of adhesive compared to that of substrate allowed the stress to be relaxed with less bow, but led to significantly greater dimensional distortion. Conversely, lower loss factor of adhesive allowed less distortion but led to larger wafer bow. A finite element model using ANSYS was developed to predict the trend in bow-distortion of bonded systems as a function of the viscoelastic properties of adhesive. Inclusion of the viscoelasticity of flexible plastic substrate itself was critical to achieving good agreement between simulation and experiment. Simulation results showed that there is a limited range within which tuning the rheology of adhesive can control the stress-distortion. Therefore, this model can aid in design of new adhesive formulations compatible with different processing requirements of various flexible microelectronics applications.
ContributorsHaq, Jesmin (Author) / Raupp, Gregory B (Thesis advisor) / Vogt, Bryan D (Thesis advisor) / Dai, Lenore (Committee member) / Loy, Douglas (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsCummiskey, Hannah (Performer) / Kim, Olga (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-23
ContributorsGoglia, Adrienne (Performer)
Created2018-03-02
ContributorsEvans, Emily (Performer) / Sherrill, Amanda (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-02
ContributorsMartorana, Gabrielle (Performer) / Olarte, Aida (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-20