Matching Items (5)
Filtering by

Clear all filters

152727-Thumbnail Image.png
Description
American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute

American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute music (i.e. it does not follow a specific narrative) comprising blocks of distinct, contrasting gestures which bookend a central region of delicate textural layering and minimal gestural contrast. Though three gestures (a descending interval followed by a smaller ascending interval, a dynamic swell, and a chordal "chop") were consciously employed throughout, it is the first gesture of the three that creates a sense of unification and overall coherence to the work. Additionally, the work challenges listeners' expectations of traditional wind ensemble music by featuring the trumpet as a quasi-soloist whose material is predominately inspired by transcriptions of jazz solos. This jazz-inspired material is at times mimicked and further developed by the ensemble, also often in a soloistic manner while the trumpet maintains its role throughout. This interplay of dialogue between the "soloists" and the "ensemble" further skews listeners' conceptions of traditional wind ensemble music by featuring almost every instrument in the ensemble. Though the term "American Primitive" is usually associated with the "naïve art" movement, it bears no association to the music presented in this work. Instead, the term refers to the author's own compositional attitudes, education, and aesthetic interests.
ContributorsJandreau, Joshua (Composer) / Rockmaker, Jody D (Thesis advisor) / Rogers, Rodney I (Committee member) / Demars, James R (Committee member) / Arizona State University (Publisher)
Created2014
150960-Thumbnail Image.png
Description
Accurate characterization of forest canopy cover from satellite imagery hinges on the development of a model that considers the level of detail achieved by field methods. With the improved precision of both optical sensors and various spatial techniques, models built to extract forest structure attributes have become increasingly robust, yet

Accurate characterization of forest canopy cover from satellite imagery hinges on the development of a model that considers the level of detail achieved by field methods. With the improved precision of both optical sensors and various spatial techniques, models built to extract forest structure attributes have become increasingly robust, yet many still fail to address some of the most important characteristics of a forest stand's intricate make-up. The objective of this study, therefore, was to address canopy cover from the ground, up. To assess canopy cover in the field, a vertical densitometer was used to acquire a total of 2,160 percent-cover readings from 30 randomly located triangular plots within a 6.94 km2 study area in the central highlands of the Bradshaw Ranger District, Prescott National Forest, Arizona. Categorized by species with the largest overall percentage of cover observations (Pinus ponderosa, Populus tremuloides, and Quercus gambelii), three datasets were created to assess the predictability of coniferous, deciduous, and mixed (coniferous and deciduous) canopies. Landsat-TM 5 imagery was processed using six spectral enhancement algorithms (PCA, TCT, NDVI, EVI, RVI, SAVI) and three local windows (3x3, 5x5, 7x7) to extract and assess the various ways in which these data were expressed in the imagery, and from those expressions, develop a model that predicted percent-cover for the entire study area. Generally, modeled cover estimates exceeded actual cover, over predicting percent-cover by a margin of 9-13%. Models predicted percent-cover more accurately when treated with a 3x3 local window than those treated with 5x5 and 7x7 local windows. In addition, the performance of models defined by the principal components of three vegetation indices (NDVI, EVI, RVI) were superior to those defined by the principal components of all four (NDVI, EVI, RVI, SAVI), as well as the principal and tasseled cap components of all multispectral bands (bands 123457). Models designed to predict mixed and coniferous percent-cover were more accurate than deciduous models.
ContributorsSchirmang, Tracy Lynn (Author) / Myint, Soe W (Thesis advisor) / Fall, Patricia L. (Thesis advisor) / Brazel, Anthony J. (Committee member) / Arizona State University (Publisher)
Created2012
156753-Thumbnail Image.png
Description
Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling.

Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling. However, this approach is limited spatially and temporally in addition to being costly. In this study, the application of remotely sensed reflectance data from Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) along with data generated through field-sampling is used to gain a better understanding of the seasonal development of algal communities and levels of suspended particulates in the three main terminal reservoirs supplying water to the Phoenix metro area: Bartlett Lake, Lake Pleasant, and Saguaro Lake. Algal abundances, particularly the abundance of filamentous cyanobacteria, increased with warmer temperatures in all three reservoirs and reached the highest comparative abundance in Bartlett Lake. Prymnesiophytes (the class of algae to which the toxin-producing golden algae belong) tended to peak between June and August, with one notable peak occurring in Saguaro Lake in August 2017 during which time a fish-kill was observed. In the cooler months algal abundance was comparatively lower in all three lakes, with a more even distribution of abundance across algae classes. In-situ data from March 2017 to March 2018 were compared with algal communities sampled approximately ten years ago in each reservoir to understand any possible long-term changes. The findings show that the algal communities in the reservoirs are relatively stable, particularly those of the filamentous cyanobacteria, chlorophytes, and prymnesiophytes with some notable exceptions, such as the abundance of diatoms, which increased in Bartlett Lake and Lake Pleasant. When in-situ data were compared with Landsat-derived reflectance data, two-band combinations were found to be the best-estimators of chlorophyll-a concentration (as a proxy for algal biomass) and total suspended sediment concentration. The ratio of the reflectance value of the red band and the blue band produced reasonable estimates for the in-situ parameters in Bartlett Lake. The ratio of the reflectance value of the green band and the blue band produced reasonable estimates for the in-situ parameters in Saguaro Lake. However, even the best performing two-band algorithm did not produce any significant correlation between reflectance and in-situ data in Lake Pleasant. Overall, remotely-sensed observations can significantly improve our understanding of the water quality as measured by algae abundance and particulate loading in Arizona Reservoirs, especially when applied over long timescales.
ContributorsRussell, Jazmine Barkley (Author) / Neuer, Susanne (Thesis advisor) / Fox, Peter (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2018
155344-Thumbnail Image.png
Description
Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is

Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is a weather-related phenomenon caused by the horizontal refraction of sunlight in the upper atmosphere. This refraction creates the illusion of three suns above the horizon, and is often accompanied by a bright halo called the circumzenithal arc. The halo is caused by light bending at 22° as it passes through hexagonal ice crystals. Consequently, the numbers six and 22 are important figures, and have been encoded into this piece in various ways.

The first section, marked “With concentrated intensity,” is characterized by the juxtaposition of tonal ambiguity and tonal affirmation, as well as the use of polymetric counterpoint (often 7/8 against 4/4 or 7/8 against 3/4). The middle section, marked “Crystalline,” provides contrast in its use of unmetered sections and independent tempos. The refraction of light is represented in this movement by a 22-note row based on a hexachord (B-flat, F, C, G, A, E) introduced in measure 164 of the first section. The third section, marked “With frenetic energy,” begins without pause on an arresting entrance of the drums playing an additive rhythmic pattern. This pattern (5+7+9+1) amounts to 22 eighth-note pulses and informs much of the motivic and structural considerations for the remainder of the piece.
ContributorsMitton, Stephen LeRoy (Author) / DeMars, James (Thesis advisor) / Norton, Kay (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2017
154356-Thumbnail Image.png
Description
A New Home is a multi-movement musical composition written for a chamber orchestra of flute, oboe, clarinet in B-flat, bassoon, horn in F, trumpet in C, trombone, bass trombone, percussion (1), pianoforte, and strings. The duration of the entire piece is approximately fourteen minutes (movement 1: four minutes; mvt.

A New Home is a multi-movement musical composition written for a chamber orchestra of flute, oboe, clarinet in B-flat, bassoon, horn in F, trumpet in C, trombone, bass trombone, percussion (1), pianoforte, and strings. The duration of the entire piece is approximately fourteen minutes (movement 1: four minutes; mvt. 2: four minutes and thirty seconds; mvt. 3: five minutes and thirty seconds). As an exercise in compositional experimentation, some of the musical techniques explored throughout the piece are harmonic planing or parallelism, ostinati, modality, chromatic dissonance, thematic transformation, mixed meter, and syncopation, as well as issues of orchestral blend, balance, and color.

The first movement, ironically titled “Don’t Panic,” highlights my initial anxieties on experimentation by creating hectic textures. The movement is structured around two main alternating sections of chromatic, chordal dissonance with more modal, melodic syncopation in addition to a developmental section, but a sense of rhythmic groove is prominent throughout. The second movement, “Still Here,” is a darker, more sensitive music as it explores various settings of its main thematic material interspersed with march-like episodes and a related secondary theme. The themes are organized around a diatonic scale that omits one pitch to comprise a six-note scale. The third movement, “Change of State,” recalls the modality and rhythmic liveliness of the first movement, and it bears a thematic relationship to the second movement. Much of the material also revolves around scales and mediant relationships to comprise an opening theme, a groove section, and an ethereal, glassy texture which ends the movement. Essentially, the piece closes with a calmer music in contrast to the brute force that opened the piece.
ContributorsJones, Zachary William (Author) / Rogers, Rodney (Thesis advisor) / Feisst, Sabine (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2016