Matching Items (14)
Filtering by

Clear all filters

152264-Thumbnail Image.png
Description
In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many

In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many community-based chamber music ensembles have been formed throughout the United States. These groups not only focus on performing classical music, but serve the needs of their communities as well. The problem, however, is that many musicians have not learned the business skills necessary to create these career opportunities. In this document I discuss the steps ensembles must take to develop sustainable careers. I first analyze how groups build a strong foundation through getting to know their communities and creating core values. I then discuss branding and marketing so ensembles can develop a public image and learn how to publicize themselves. This is followed by an investigation of how ensembles make and organize their money. I then examine the ways groups ensure long-lasting relationships with their communities and within the ensemble. I end by presenting three case studies of professional ensembles to show how groups create and maintain successful careers. Ensembles must develop entrepreneurship skills in addition to cultivating their artistry. These business concepts are crucial to the longevity of chamber groups. Through interviews of successful ensemble members and my own personal experiences in the Tetra String Quartet, I provide a guide for musicians to use when creating a community-based ensemble.
ContributorsDalbey, Jenna (Author) / Landschoot, Thomas (Thesis advisor) / McLin, Katherine (Committee member) / Ryan, Russell (Committee member) / Solis, Theodore (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152727-Thumbnail Image.png
Description
American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute

American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute music (i.e. it does not follow a specific narrative) comprising blocks of distinct, contrasting gestures which bookend a central region of delicate textural layering and minimal gestural contrast. Though three gestures (a descending interval followed by a smaller ascending interval, a dynamic swell, and a chordal "chop") were consciously employed throughout, it is the first gesture of the three that creates a sense of unification and overall coherence to the work. Additionally, the work challenges listeners' expectations of traditional wind ensemble music by featuring the trumpet as a quasi-soloist whose material is predominately inspired by transcriptions of jazz solos. This jazz-inspired material is at times mimicked and further developed by the ensemble, also often in a soloistic manner while the trumpet maintains its role throughout. This interplay of dialogue between the "soloists" and the "ensemble" further skews listeners' conceptions of traditional wind ensemble music by featuring almost every instrument in the ensemble. Though the term "American Primitive" is usually associated with the "naïve art" movement, it bears no association to the music presented in this work. Instead, the term refers to the author's own compositional attitudes, education, and aesthetic interests.
ContributorsJandreau, Joshua (Composer) / Rockmaker, Jody D (Thesis advisor) / Rogers, Rodney I (Committee member) / Demars, James R (Committee member) / Arizona State University (Publisher)
Created2014
153120-Thumbnail Image.png
Description
This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses

This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses exclusively on original, published works for two oboes and English horn. Unpublished works, arrangements, works that are out of print and not available through interlibrary loan, or works that feature slightly altered instrumentation are not included.

Entries in this annotated bibliography are listed alphabetically by the last name of the composer. Each entry includes the dates of the composer and a brief biography, followed by the title of the work, composition date, commission, and dedication of the piece. Also included are the names of publishers, the length of the entire piece in minutes and seconds, and an incipit of the first one to eight measures for each movement of the work.

In addition to providing a comprehensive and detailed bibliography of oboe trios, this document traces the history of the oboe trio and includes biographical sketches of each composer cited, allowing readers to place the genre of oboe trios and each individual composition into its historical context. Four appendices at the end include a list of trios arranged alphabetically by composer's last name, chronologically by the date of composition, and by country of origin and a list of publications of Ludwig van Beethoven's oboe trios from the 1940s and earlier.
ContributorsSassaman, Melissa Ann (Author) / Schuring, Martin (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Hill, Gary (Committee member) / Arizona State University (Publisher)
Created2014
155100-Thumbnail Image.png
Description
The repertoire for guitar and piano duo is small in comparison with other chamber music instrumentation; therefore, it is important to broaden this repertoire. In addition to creating original compositions, arrangements of existing works contribute to this expansion.

This project focuses on an arrangement of Bachianas Brasileiras No. 1 by

The repertoire for guitar and piano duo is small in comparison with other chamber music instrumentation; therefore, it is important to broaden this repertoire. In addition to creating original compositions, arrangements of existing works contribute to this expansion.

This project focuses on an arrangement of Bachianas Brasileiras No. 1 by Brazilian composer Heitor Villa-Lobos (1887-1959), a work originally conceived for cello ensemble with a minimum of eight cellos. In order to contextualize the proposed arrangement, this study contains a brief historical listing of the repertoire for guitar and piano duo and of the guitar works by Villa-Lobos. Also, it includes a description of the Bachianas Brasileiras series and a discussion of the arranging methodology that shows how the original musical ideas of the composer were adapted using techniques that are idiomatic to the guitar and piano. The full arrangement is included in Appendix A.
ContributorsFigueiredo Bartoloni, Fabio (Author) / Koonce, Frank (Thesis advisor) / Suzuki, Kotoka (Committee member) / Landschoot, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
155344-Thumbnail Image.png
Description
Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is

Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is a weather-related phenomenon caused by the horizontal refraction of sunlight in the upper atmosphere. This refraction creates the illusion of three suns above the horizon, and is often accompanied by a bright halo called the circumzenithal arc. The halo is caused by light bending at 22° as it passes through hexagonal ice crystals. Consequently, the numbers six and 22 are important figures, and have been encoded into this piece in various ways.

The first section, marked “With concentrated intensity,” is characterized by the juxtaposition of tonal ambiguity and tonal affirmation, as well as the use of polymetric counterpoint (often 7/8 against 4/4 or 7/8 against 3/4). The middle section, marked “Crystalline,” provides contrast in its use of unmetered sections and independent tempos. The refraction of light is represented in this movement by a 22-note row based on a hexachord (B-flat, F, C, G, A, E) introduced in measure 164 of the first section. The third section, marked “With frenetic energy,” begins without pause on an arresting entrance of the drums playing an additive rhythmic pattern. This pattern (5+7+9+1) amounts to 22 eighth-note pulses and informs much of the motivic and structural considerations for the remainder of the piece.
ContributorsMitton, Stephen LeRoy (Author) / DeMars, James (Thesis advisor) / Norton, Kay (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2017
155807-Thumbnail Image.png
Description
Concentrating Solar Power (CSP) plant technology can produce reliable and dispatchable electric power from an intermittent solar resource. Recent advances in thermochemical energy storage (TCES) can offer further improvements to increase off-sun operating hours, improve system efficiency, and the reduce cost of delivered electricity. This work describes a 111.7 MWe

Concentrating Solar Power (CSP) plant technology can produce reliable and dispatchable electric power from an intermittent solar resource. Recent advances in thermochemical energy storage (TCES) can offer further improvements to increase off-sun operating hours, improve system efficiency, and the reduce cost of delivered electricity. This work describes a 111.7 MWe CSP plant with TCES using a mixed ionic-electronic conducting metal oxide, CAM28, as both the heat transfer and thermal energy storage media. Turbine inlet temperatures reach 1200 °C in the combined cycle power block. A techno-economic model of the CSP system is developed to evaluate design considerations to meet targets for low-cost and renewable power with 6-14 hours of dispatchable storage for off-sun power generation. Hourly solar insolation data is used for Barstow, California, USA. Baseline design parameters include a 6-hour storage capacity and a 1.8 solar multiple. Sensitivity analyses are performed to evaluate the effect of engineering parameters on total installed cost, generation capacity, and levelized cost of electricity (LCOE). Calculated results indicate a full-scale 111.7 MWe system at $274 million in installed cost can generate 507 GWh per year at a levelized cost of $0.071 per kWh. Expected improvements to design, performance, and costs illustrate options to reduce energy costs to less than $0.06 per kWh.
ContributorsLopes, Mariana (Author) / Johnson, Nathan G (Thesis advisor) / Stechel, Ellen B (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2017
168407-Thumbnail Image.png
Description
A Compact Linear Fresnel Reflector (CLFR) is a simple, cost-effective, and scalable option for generating solar power by concentrating the sun rays. To make a most feasible application, design parameters of the CLFR, such as solar concentrator design parameters, receiver design parameters, heat transfer, power block parameters, etc., should be

A Compact Linear Fresnel Reflector (CLFR) is a simple, cost-effective, and scalable option for generating solar power by concentrating the sun rays. To make a most feasible application, design parameters of the CLFR, such as solar concentrator design parameters, receiver design parameters, heat transfer, power block parameters, etc., should be optimized to achieve optimum efficiency. Many researchers have carried out modeling and optimization of CLFR with various numerical or analytical methods. However, often computational time and cost are significant in these existing approaches. This research attempts to address this issue by proposing a novel computational approach with the help of increased computational efficiency and machine learning. The approach consists of two parts: the algorithm and the machine learning model. The algorithm has been created to fulfill the requirement of the Monte Carlo Ray tracing method for CLFR collector simulation, which is a simplified version of the conventional ray-tracing method. For various configurations of the CLFR system, optical losses and optical efficiency are calculated by employing these design parameters, such as the number of mirrors, mirror length, mirror width, space between adjacent mirrors, and orientation angle of the CLFR system. Further, to reduce the computational time, a machine learning method is used to predict the optical efficiency for the various configurations of the CLFR system. This entire method is validated using an existing approach (SolTrace) for the optical losses and optical efficiency of a CLFR system. It is observed that the program requires 6.63 CPU-hours of computational time are required by the program to calculate efficiency. In contrast, the novel machine learning approach took only seconds to predict the optical efficiency with great accuracy. Therefore, this method can be used to optimize a CLFR system based on the location and land configuration with reduced computational time. This will be beneficial for CLFR to be a potential candidate for concentrating solar power option.
ContributorsLunagariya, Shyam (Author) / Phelan, Patrick (Thesis advisor) / Kwon, Beomjin (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021
157271-Thumbnail Image.png
Description
Arnold Schoenberg’s Pierrot Lunaire, written in 1912 for an ensemble of flute, clarinet, piano, violin, cello, and voice
arrator (with certain instrumental doublings), has, since its premiere, greatly influenced composers writing chamber music. In fact, this particular instrumentation has become known as the “Pierrot Ensemble,” with variations on Schoenberg’s creation used

Arnold Schoenberg’s Pierrot Lunaire, written in 1912 for an ensemble of flute, clarinet, piano, violin, cello, and voice
arrator (with certain instrumental doublings), has, since its premiere, greatly influenced composers writing chamber music. In fact, this particular instrumentation has become known as the “Pierrot Ensemble,” with variations on Schoenberg’s creation used by Igor Stravinsky, Luciano Berio, and many other composers.

There are many resources devoted to music for chamber winds composed during the twentieth century, including those inspired by Schoenberg’s configuration. Additionally, many sources have comprehensively covered known chamber music composed before 1900. However, there is very little research dedicated to chamber wind music composed since 2000.

The purpose of this study is to contribute to the body of research about the music by: 1) creating an annotated bibliography of 21st century wind chamber music.; and 2) thereby catalyzing the discovery of recently composed wind chamber music. Moreover, I hope to address and encourage diversity through my research. To that end, the Composer’s Diversity Database was used as a primary resource for discovering compositions written since 2000 for wind/percussion-based ensembles comprising six to thirteen players.
ContributorsBrown, Jr., Fredrick Marcell (Author) / Hill, Gary W. (Thesis advisor) / Caslor, Jason (Committee member) / Schmelz, Peter (Committee member) / Stover, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
155995-Thumbnail Image.png
Description
ABSTRACT



The purpose of this study is to analyze Tunes from My Home, a Trio for Violin, Cello, and Piano by Chinese-American composer Chen Yi (b. 1953), as well as to provide a performance guide from a collaborative pianist's perspective. Of Cantonese origin herself, Chen Yi composed several

ABSTRACT



The purpose of this study is to analyze Tunes from My Home, a Trio for Violin, Cello, and Piano by Chinese-American composer Chen Yi (b. 1953), as well as to provide a performance guide from a collaborative pianist's perspective. Of Cantonese origin herself, Chen Yi composed several works inspired by Cantonese music, including this trio. Chen Yi composed this trio between 2007 and 2008 and dedicated it to her long time friend pianist Pan Xun, who is also of Cantonese origin. Inspired by this shared Cantonese heritage, Chen Yi incorporated within this work three well-known Cantonese tunes, Cantonese instrumental techniques and sonorities, and elements of the shifan luogu, a wind and percussion ensemble often used in traditional Cantonese music. Coming from the same region as the composer, the author of this paper feels connected with this piece, and as a collaborative pianist, has the opportunity to introduce Cantonese music to a wider audience through the piano trio. Chapter one introduces the motivation for this study. Chapter two provides a brief biography of Chen Yi. Chapter three introduces the history, the scales, and the instruments of Cantonese music as well as other Cantonese influences on this trio, especially the three tunes. Chapter four includes a detailed analysis of each movement in terms of the form and application of the tunes and rhythms of Cantonese music. Chapter five shares the author’s experience of approaching and interpreting this piece in an appropriate style based on her Cantonese roots. The conclusion evaluates the significance of the fusion of Cantonese music with Western compositional techniques in this piece.
ContributorsWu, Xuelai (Author) / Campbell, Andrew (Thesis advisor) / DeMars, James (Committee member) / Landschoot, Thomas (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2017
155564-Thumbnail Image.png
Description
Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study

Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study investigates the performance of a 111.7 MWe CSP system coupled with a thermochemical energy storage system (TCES) that uses a redox active metal oxide acting as the heat transfer fluid. A one-dimensional thermodynamic model is introduced for the novel CSP system design, with detailed designs of the underlying nine components developed from first principles and empirical data of the heat transfer media. The model is used to (a) size components, (b) examine intraday operational behaviors of the system against varying solar insolation, (c) calculate annual productivity and performance characteristics over a simulated year, and (d) evaluate factors that affect system performance using sensitivity analysis. Time series simulations use hourly direct normal irradiance (DNI) data for Barstow, California, USA. The nominal system design uses a solar multiple of 1.8 with a storage capacity of six hours for off-sun power generation. The mass of particles to achieve six hours of storage weighs 5,140 metric tonnes. Capacity factor increases by 3.55% for an increase in storage capacity to eight hours which requires an increase in storage volume by 33% or 737 m3, or plant design can be improved by decreasing solar multiple to 1.6 to increase the ratio of annual capacity factor to solar multiple. The solar reduction receiver is the focal point for the concentrated solar energy for inducing an endothermic reaction in the particles under low partial pressure of oxygen, and the reoxidation reactor induces the opposite exothermic reaction by mixing the particles with air to power an air Brayton engine. Stream flow data indicate the solar receiver experiences the largest thermal loss of any component, excluding the solar field. Design and sensitivity analysis of thermal insulation layers for the solar receiver show that additional RSLE-57 insulation material achieves the greatest increase in energetic efficiency of the five materials investigated.
ContributorsGorman, Brandon Tom (Author) / Johnson, Nathan G (Thesis advisor) / Stechel, Ellen B (Committee member) / Chester, Mikhail V (Committee member) / Arizona State University (Publisher)
Created2017