Matching Items (1,382)
Filtering by

Clear all filters

152264-Thumbnail Image.png
Description
In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many

In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many community-based chamber music ensembles have been formed throughout the United States. These groups not only focus on performing classical music, but serve the needs of their communities as well. The problem, however, is that many musicians have not learned the business skills necessary to create these career opportunities. In this document I discuss the steps ensembles must take to develop sustainable careers. I first analyze how groups build a strong foundation through getting to know their communities and creating core values. I then discuss branding and marketing so ensembles can develop a public image and learn how to publicize themselves. This is followed by an investigation of how ensembles make and organize their money. I then examine the ways groups ensure long-lasting relationships with their communities and within the ensemble. I end by presenting three case studies of professional ensembles to show how groups create and maintain successful careers. Ensembles must develop entrepreneurship skills in addition to cultivating their artistry. These business concepts are crucial to the longevity of chamber groups. Through interviews of successful ensemble members and my own personal experiences in the Tetra String Quartet, I provide a guide for musicians to use when creating a community-based ensemble.
ContributorsDalbey, Jenna (Author) / Landschoot, Thomas (Thesis advisor) / McLin, Katherine (Committee member) / Ryan, Russell (Committee member) / Solis, Theodore (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152727-Thumbnail Image.png
Description
American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute

American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute music (i.e. it does not follow a specific narrative) comprising blocks of distinct, contrasting gestures which bookend a central region of delicate textural layering and minimal gestural contrast. Though three gestures (a descending interval followed by a smaller ascending interval, a dynamic swell, and a chordal "chop") were consciously employed throughout, it is the first gesture of the three that creates a sense of unification and overall coherence to the work. Additionally, the work challenges listeners' expectations of traditional wind ensemble music by featuring the trumpet as a quasi-soloist whose material is predominately inspired by transcriptions of jazz solos. This jazz-inspired material is at times mimicked and further developed by the ensemble, also often in a soloistic manner while the trumpet maintains its role throughout. This interplay of dialogue between the "soloists" and the "ensemble" further skews listeners' conceptions of traditional wind ensemble music by featuring almost every instrument in the ensemble. Though the term "American Primitive" is usually associated with the "naïve art" movement, it bears no association to the music presented in this work. Instead, the term refers to the author's own compositional attitudes, education, and aesthetic interests.
ContributorsJandreau, Joshua (Composer) / Rockmaker, Jody D (Thesis advisor) / Rogers, Rodney I (Committee member) / Demars, James R (Committee member) / Arizona State University (Publisher)
Created2014
153120-Thumbnail Image.png
Description
This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses

This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses exclusively on original, published works for two oboes and English horn. Unpublished works, arrangements, works that are out of print and not available through interlibrary loan, or works that feature slightly altered instrumentation are not included.

Entries in this annotated bibliography are listed alphabetically by the last name of the composer. Each entry includes the dates of the composer and a brief biography, followed by the title of the work, composition date, commission, and dedication of the piece. Also included are the names of publishers, the length of the entire piece in minutes and seconds, and an incipit of the first one to eight measures for each movement of the work.

In addition to providing a comprehensive and detailed bibliography of oboe trios, this document traces the history of the oboe trio and includes biographical sketches of each composer cited, allowing readers to place the genre of oboe trios and each individual composition into its historical context. Four appendices at the end include a list of trios arranged alphabetically by composer's last name, chronologically by the date of composition, and by country of origin and a list of publications of Ludwig van Beethoven's oboe trios from the 1940s and earlier.
ContributorsSassaman, Melissa Ann (Author) / Schuring, Martin (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Hill, Gary (Committee member) / Arizona State University (Publisher)
Created2014
153236-Thumbnail Image.png
Description
A series of pyrite thin films were synthesized using a novel sequential evaporation

technique to study the effects of substrate temperature on deposition rate and micro-structure of

the deposited material. Pyrite was deposited in a monolayer-by-monolayer fashion using

sequential evaporation of Fe under high vacuum, followed by sulfidation at high S pressures

(typically >

A series of pyrite thin films were synthesized using a novel sequential evaporation

technique to study the effects of substrate temperature on deposition rate and micro-structure of

the deposited material. Pyrite was deposited in a monolayer-by-monolayer fashion using

sequential evaporation of Fe under high vacuum, followed by sulfidation at high S pressures

(typically > 1 mTorr to 1 Torr). Thin films were synthesized using two different growth processes; a

one-step process in which a constant growth temperature is maintained throughout growth, and a

three-step process in which an initial low temperature seed layer is deposited, followed by a high

temperature layer, and then finished with a low temperature capping layer. Analysis methods to

analyze the properties of the films included Glancing Angle X-Ray Diffraction (GAXRD),

Rutherford Back-scattering Spectroscopy (RBS), Transmission Electron Microscopy (TEM),

Secondary Ion Mass Spectroscopy (SIMS), 2-point IV measurements, and Hall effect

measurements. Our results show that crystallinity of the pyrite thin film improves and grain size

increases with increasing substrate temperature. The sticking coefficient of Fe was found to

increase with increasing growth temperature, indicating that the Fe incorporation into the growing

film is a thermally activated process.
ContributorsWertheim, Alex (Author) / Newman, Nathan (Thesis advisor) / Singh, Rakesh (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2014
154002-Thumbnail Image.png
Description
The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the

The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the deposit are andesitic pyroclastic materials, which have been hydrothermally altered into argillic clay zones. High-sulfidation (acidic) alteration produced clay zones with elevated pyrite (18%), illite-smectite (I-S) (70% illite), elemental sulfur, kaolinite and carbonates. Low-sulfidation alteration at neutral pH generated clay zones with lower pyrite concentrations pyrite (4-6%), the mixed-layered I-S clay rectorite (R1, I-S) and quartz.

Antibacterial susceptibility testing reveals that hydrated clays containing pyrite and I-S are effective at killing (100%) of the model pathogens tested (E. coli and S. epidermidis) when pH (< 4.2) and Eh (> 450 mV) promote pyrite oxidation and mineral dissolution, releasing > 1 mM concentrations of Fe2+, Fe3+ and Al3+. However, certain oxidized clay zones containing no pyrite still inhibited bacterial growth. These clays buffered solutions to low pH (< 4.7) and oxidizing Eh (> 400 mV) conditions, releasing lower amounts (< 1 mM) of Fe and Al. The presence of carbonate in the clays eliminated antibacterial activity due to increases in pH, which lower pyrite oxidation and mineral dissolution rates.

The antibacterial mechanism of these natural clays was explored using metal toxicity and genetic assays, along with advanced bioimaging techniques. Antibacterial clays provide a continuous reservoir of Fe2+, Fe3+ and Al3+ that synergistically attack pathogens while generating hydrogen peroxide (H2O¬2). Results show that dissolved Fe2+ and Al3+ are adsorbed to bacterial envelopes, causing protein misfolding and oxidation in the outer membrane. Only Fe2+ is taken up by the cells, generating oxidative stress that damages DNA and proteins. Excess Fe2+ oxidizes inside the cell and precipitates Fe3+-oxides, marking the sites of hydroxyl radical (•OH) generation. Recognition of this novel geochemical antibacterial process should inform designs of new mineral based antibacterial agents and could provide a new economic industry for such clays.
ContributorsMorrison, Keith D (Author) / Williams, Lynda B (Thesis advisor) / Williams, Stanley N (Thesis advisor) / Misra, Rajeev (Committee member) / Shock, Everett (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsPagano, Caio, 1940- (Performer) / Mechetti, Fabio (Conductor) / Buck, Elizabeth (Performer) / Schuring, Martin (Performer) / Spring, Robert (Performer) / Rodrigues, Christiano (Performer) / Landschoot, Thomas (Performer) / Rotaru, Catalin (Performer) / Avanti Festival Orchestra (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-02
ContributorsDe La Cruz, Nathaniel (Performer) / LoGiudice, Rosa (Contributor) / Tallino, Michael (Performer) / McKinch, Riley (Performer) / Li, Yuhui (Performer) / Armenta, Tyler (Contributor) / Gonzalez, David (Performer) / Jones, Tarin (Performer) / Ryall, Blake (Performer) / Senseman, Stephen (Performer)
Created2018-10-10
154547-Thumbnail Image.png
Description
Pyrite is a 0.95 eV bandgap semiconductor which is purported to have great potential in widespread, low–cost photovoltaic cells. A thorough material selection process was used in the design of a pyrite sequential vapor deposition chamber aimed at reducing and possibly eliminating contamination during thin film growth. The design process

Pyrite is a 0.95 eV bandgap semiconductor which is purported to have great potential in widespread, low–cost photovoltaic cells. A thorough material selection process was used in the design of a pyrite sequential vapor deposition chamber aimed at reducing and possibly eliminating contamination during thin film growth. The design process focused on identifying materials that do not produce volatile components when exposed to high temperatures and high sulfur pressures. Once the materials were identified and design was completed, the ultra–high vacuum growth system was constructed and tested.

Pyrite thin films were deposited using the upgraded sequential vapor deposition chamber by varying the substrate temperature from 250°C to 420°C during deposition, keeping sulfur pressure constant at 1 Torr. Secondary Ion Mass Spectrometry (SIMS) results showed that all contaminants in the films were reduced in concentration by orders of magnitude from those grown with the previous system. Characterization techniques of Rutherford Back–scattering Spectrometry (RBS), X–Ray Diffraction (XRD), Raman Spectroscopy, Optical Profilometry and UV/Vis/Near–IR Spectroscopy were performed on the deposited thin films. The results indicate that stoichiometric ratio of S:Fe, structural–quality (epitaxy), optical roughness and percentage of pyrite in the deposited thin films improve with increase in deposition temperature. A Tauc plot of the optical measurements indicates that the pyrite thin films have a bandgap of 0.94 eV.
ContributorsWalimbe, Aditya (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Arizona State University (Publisher)
Created2016
154724-Thumbnail Image.png
Description
Measurements of the geometrical magnetoresistance of a conventional semiconductor, gallium arsenide (GaAs), and a more recently developed semiconductor, iron pyrite (FeS2) were measured in the Corbino disc geometry as a function of magnetic field to determine the carrier mobility (μm). These results were compared with measurements of the Hall mobility

Measurements of the geometrical magnetoresistance of a conventional semiconductor, gallium arsenide (GaAs), and a more recently developed semiconductor, iron pyrite (FeS2) were measured in the Corbino disc geometry as a function of magnetic field to determine the carrier mobility (μm). These results were compared with measurements of the Hall mobility (μH) made in the Van der Pauw configuration. The scattering coefficient (ξ), defined as the ratio between magnetoresistance and Hall mobility (μm/μH), was determined experimentally for GaAs and natural pyrite from 300 K to 4.2 K. The effect of contact resistance and heating on the measurement accuracy is discussed.
ContributorsRavi, Aditya (Author) / Newman, Nathan (Thesis advisor) / Singh, Rakesh (Committee member) / Ferry, David K. (Committee member) / Arizona State University (Publisher)
Created2016