Matching Items (791)
Filtering by

Clear all filters

ContributorsChang, Ruihong (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-29
152388-Thumbnail Image.png
Description
Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors which are less susceptible to radiation present outside the earth's

Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors which are less susceptible to radiation present outside the earth's atmosphere, in other words their functioning is not disrupted even in presence of disruptive radiation. The presence of these particles forces the designers to come up with design techniques at circuit and chip levels to alleviate the errors which can be encountered in the functioning of microprocessors. Microprocessor evolution has been very rapid in terms of performance but the same cannot be said about its rad-hard counterpart. With the total data processing capability overall increasing rapidly, the clear lack of performance of the processors manifests as a bottleneck in any processing system. To design high performance rad-hard microprocessors designers have to overcome difficult design problems at various design stages i.e. Architecture, Synthesis, Floorplanning, Optimization, routing and analysis all the while maintaining circuit radiation hardness. The reference design `HERMES' is targeted at 90nm IBM G process and is expected to reach 500Mhz which is twice as fast any processor currently available. Chapter 1 talks about the mechanisms of radiation effects which cause upsets and degradation to the functioning of digital circuits. Chapter 2 gives a brief description of the components which are used in the design and are part of the consistent efforts at ASUVLSI lab culminating in this chip level implementation of the design. Chapter 3 explains the basic digital design ASIC flow and the changes made to it leading to a rad-hard specific ASIC flow used in implementing this chip. Chapter 4 talks about the triple mode redundant (TMR) specific flow which is used in the block implementation, delineating the challenges faced and the solutions proposed to make the flow work. Chapter 5 explains the challenges faced and solutions arrived at while using the top-level flow described in chapter 3. Chapter 6 puts together the results and analyzes the design in terms of basic integrated circuit design constraints.
ContributorsRamamurthy, Chandarasekaran (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Barnaby, Hugh J (Committee member) / Mayhew, David (Committee member) / Arizona State University (Publisher)
Created2013
153808-Thumbnail Image.png
Description
Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The

Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The work was commissioned by violinist Lev Polyakin, who specifically requested some short pieces that could be performed in a local jazz establishment named Night Town in Cleveland, Ohio. The result is a work that is approximately fifteen minutes in length. Schoenfeld is a respected composer in the contemporary classical music community, whose Café Music (1986) for piano trio has recently become a staple of the standard chamber music repertoire. Many of his other works, however, remain in relative obscurity. It is the focus of this document to shed light on at least one other notable composition; Four Souvenirs for Violin and Piano. Among the topics to be discussed regarding this piece are a brief history behind the genesis of this composition, a structural summary of the entire work and each of its movements, and an appended practice guide based on interview and coaching sessions with the composer himself. With this project, I hope to provide a better understanding and appreciation of this work.
ContributorsJanczyk, Kristie Annette (Author) / Ryan, Russell (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsASU Library. Music Library (Publisher)
Created2018-02-23
ContributorsWhite, Aaron (Performer) / Kim, Olga (Performer) / Hammond, Marinne (Performer) / Shaner, Hayden (Performer) / Yoo, Katie (Performer) / Shoemake, Crista (Performer) / Gebe, Vladimir, 1987- (Performer) / Wills, Grace (Performer) / McKinch, Riley (Performer) / Freshmen Four (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-27
ContributorsRosenfeld, Albor (Performer) / Pagano, Caio, 1940- (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-03
ContributorsASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsCao, Yuchen (Performer) / Chen, Sicong (Performer) / Soberano, Chino (Performer) / Nam, Michelle (Performer) / Collins, Clarice (Performer) / Witt, Juliana (Performer) / Liu, Jingting (Performer) / Chen, Neilson (Performer) / Zhang, Aihua (Performer) / Jiang, Zhou (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-25
132909-Thumbnail Image.png
Description
This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used

This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used along with 3D printed plastic components and an electronic motor control board to develop a functional open-loop controlled gripper for use in collective transportation experiments. Code was developed that effectively acquired and filtered rate of rotation data alongside other code that allows for straightforward control of the DC motor through experimentally derived relationships between the voltage applied to the DC motor and the torque output of the DC motor. Additionally, several versions of the physical components are described through their development.
ContributorsMohr, Brennan (Author) / Berman, Spring (Thesis director) / Ren, Yi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133327-Thumbnail Image.png
Description
This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check

This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check for the validity of design integration before moving forward on systems testing. With this script, users are able to visually analyze the landing gear configurations on an aircraft in both the gear up and gear down configuration. The primary purpose this serves is to determine the validity of the gear's potential to fit within the limited real estate on an aircraft body. This, theoretically, can save time by weeding out infeasible designs before moving forward with subsystem performance testing. The script, developed in Python, constructs CAD models of dual and dual-tandem main landing gear configurations in the CAD program Rhino5. With an included design template consisting of 33 parameters, the script allows for a reasonable trade off between conciseness and flexibility of design.
ContributorsPatrick, Noah Edward (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05