Matching Items (5)
Filtering by

Clear all filters

150509-Thumbnail Image.png
Description
Gathering and managing software requirements, known as Requirement Engineering (RE), is a significant and basic step during the Software Development Life Cycle (SDLC). Any error or defect during the RE step will propagate to further steps of SDLC and resolving it will be more costly than any defect in other

Gathering and managing software requirements, known as Requirement Engineering (RE), is a significant and basic step during the Software Development Life Cycle (SDLC). Any error or defect during the RE step will propagate to further steps of SDLC and resolving it will be more costly than any defect in other steps. In order to produce better quality software, the requirements have to be free of any defects. Verification and Validation (V&V;) of requirements are performed to improve their quality, by performing the V&V; process on the Software Requirement Specification (SRS) document. V&V; of the software requirements focused to a specific domain helps in improving quality. A large database of software requirements from software projects of different domains is created. Software requirements from commercial applications are focus of this project; other domains embedded, mobile, E-commerce, etc. can be the focus of future efforts. The V&V; is done to inspect the requirements and improve the quality. Inspections are done to detect defects in the requirements and three approaches for inspection of software requirements are discussed; ad-hoc techniques, checklists, and scenario-based techniques. A more systematic domain-specific technique is presented for performing V&V; of requirements.
ContributorsChughtai, Rehman (Author) / Ghazarian, Arbi (Thesis advisor) / Bansal, Ajay (Committee member) / Millard, Bruce (Committee member) / Arizona State University (Publisher)
Created2012
156331-Thumbnail Image.png
Description
Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.
ContributorsHenderson, Christopher (Author) / Bansal, Ajay (Thesis advisor) / Lindquist, Timothy (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2018
187854-Thumbnail Image.png
Description
Traditional sports coaching involves face-to-face instructions with athletes or playingback 2D videos of athletes’ training. However, if the coach is not in the same area as the athlete, then the coach will not be able to see the athlete’s full body and thus cannot give precise guidance to the athlete, limiting the

Traditional sports coaching involves face-to-face instructions with athletes or playingback 2D videos of athletes’ training. However, if the coach is not in the same area as the athlete, then the coach will not be able to see the athlete’s full body and thus cannot give precise guidance to the athlete, limiting the athlete’s improvement. To address these challenges, this paper proposes Augmented Coach, an augmented reality platform where coaches can view, manipulate and comment on athletes’ movement volumetric video data remotely via the network. In particular, this work includes a). Capturing the athlete’s movement video data with Kinects and converting it into point cloud format b). Transmitting the point cloud data to the coach’s Oculus headset via 5G or wireless network c). Coach’s commenting on the athlete’s joints. In addition, the evaluation of Augmented Coach includes an assessment of its performance from five metrics via the wireless network and 5G network environment, but also from the coaches’ and athletes’ experience of using it. The result shows that Augmented Coach enables coaches to instruct athletes from a distance and provide effective feedback for correcting athletes’ motions under the network.
ContributorsQiao, Yunhan (Author) / LiKamWa, Robert (Thesis advisor) / Bansal, Ajay (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2023
157482-Thumbnail Image.png
Description
Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students.

This work

Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students.

This work contributes to the construction of a tutoring companion designed to provide this feedback to students. It aims to bridge the gap between the messages the compiler delivers, and the support required for a novice student to understand the problem and fix their code. Particularly, it provides support for students learning about recursion in a beginning university Java programming course. Besides also providing affective support, a tutoring companion could be more effective when it is embedded into the environment that the student is already using, instead of an additional tool for the student to learn. The proposed Tutoring Companion is embedded into the Eclipse Integrated Development Environment (IDE).

This thesis focuses on the reasoning model for the Tutoring Companion and is developed using the techniques of a neural network. While a student uses the IDE, the Tutoring Companion collects 16 data points, including the presence of certain key words, cyclomatic complexity, and error messages from the compiler, every time it detects an event, such as a run attempt, debug attempt, or a request for help, in the IDE. This data is used as inputs to the neural network. The neural network produces a correlating single output code for the feedback to be provided to the student, which is displayed in the IDE.

The effectiveness of the approach is examined among 38 Computer Science students who solve a programming assignment while the Tutoring Companion assists them. Data is collected from these interactions, including all inputs and outputs for the neural network, and students are surveyed regarding their experience. Results suggest that students feel supported while working with the Companion and promising potential for using a neural network with an embedded companion in the future. Challenges in developing an embedded companion are discussed, as well as opportunities for future work.
ContributorsDay, Melissa (Author) / Gonzalez-Sanchez, Javier (Thesis advisor) / Bansal, Ajay (Committee member) / Mehlhase, Alexandra (Committee member) / Arizona State University (Publisher)
Created2019
157904-Thumbnail Image.png
Description
TolTEC is a three-color millimeter wavelength camera currently being developed for the Large Millimeter Telescope (LMT) in Mexico. Synthesizing data from previous astronomy cameras as well as knowledge of atmospheric physics, I have developed a simulation of the data collection of TolTEC on the LMT. The simulation was built off

TolTEC is a three-color millimeter wavelength camera currently being developed for the Large Millimeter Telescope (LMT) in Mexico. Synthesizing data from previous astronomy cameras as well as knowledge of atmospheric physics, I have developed a simulation of the data collection of TolTEC on the LMT. The simulation was built off smaller sub-projects that informed the development with an understanding of the detector array, the time streams for astronomical mapping, and the science behind Lumped Element Kinetic Inductance Detectors (LEKIDs). Additionally, key aspects of software development processes were integrated into the scientific development process to streamline collaboration across multiple universities and plan for integration on the servers at LMT. The work I have done benefits the data reduction pipeline team by enabling them to efficiently develop their software and test it on simulated data.
ContributorsHorton, Paul (Author) / Mauskopf, Philip (Thesis advisor) / Bansal, Ajay (Thesis advisor) / Sandy, Douglas (Committee member) / Arizona State University (Publisher)
Created2019