Matching Items (4)
Filtering by

Clear all filters

136688-Thumbnail Image.png
Description
As an important part of the movement for local and sustainable food in our cities, urban farming has the potential to actively involve urban dwellers in environmental, social, and economic issues of a global scale. When assessed according to a three-pillar model of sustainability, it can offer solutions to many

As an important part of the movement for local and sustainable food in our cities, urban farming has the potential to actively involve urban dwellers in environmental, social, and economic issues of a global scale. When assessed according to a three-pillar model of sustainability, it can offer solutions to many of the major problems associated with the industrial food model that currently dominates the United States market. If implemented on a larger scale in the Phoenix metropolitan area, urban farming could improve overall environmental conditions, stimulate the local economy, and help solve food access and inequality issues. Through interviews with both amateur and established local urban farmers, this thesis attempts to identify and analyze some of the main barriers to the widespread participation in and incorporation of urban agriculture in the Phoenix Valley. Problems encountered by newcomers to the practice are compared with the experiences of more successful farmers to assess which barriers may be circumvented with proper knowledge and experience and which barriers specific to the Phoenix region may require greater structural changes.
ContributorsRay, Emily Catherine (Author) / Puleo, Thomas (Thesis director) / Peterson, Greg (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-12
Description

Many people use public transportation in their daily lives, which is often praised at as a healthy and sustainable choice to make. However, in extreme temperatures this also puts people at a greater risk for negative consequences resulting from such exposure to heat. In Phoenix, public transportation riders are faced

Many people use public transportation in their daily lives, which is often praised at as a healthy and sustainable choice to make. However, in extreme temperatures this also puts people at a greater risk for negative consequences resulting from such exposure to heat. In Phoenix, public transportation riders are faced with extreme heat in the summer along with the increased internal heat production caused by the physical activity required to use public transportation. In this study, I estimated total exposure and average exposure per rider for six stops in Phoenix. To do this I used City of Phoenix ridership data, weather data, and survey responses from an ASU City of Phoenix Bus Stop Survey conducted in summer 2016. These data sets were combined by multiplying different metrics to produce various exposure values. During analysis two sets of calculations were made. One keeping weather constant and another keeping ridership constant. I found that there was a large range of exposure between the selected stops and that the thermal environment influences the amount of exposure depending on the time of day the exposure is occurring. During the morning a greener location leads to less exposure, while in the afternoon an urban location leads to less exposure. Know detailed information about exposure at these stops I was also able to evaluate survey participants' thermal comfort at each stop and how it may relate to exposure. These findings are useful in making educated transportation planning decisions and improving the quality of life for people living in places with extreme summer temperatures.

ContributorsGerster, Katrina Ashley (Author) / Hondula, David M. (Thesis director) / Watkins, Lance (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
157609-Thumbnail Image.png
Description

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants and how urban infrastructure design can lead to increased urban heat. Yet there are gaps in understanding how urban communities accumulate heat exposure, and how significantly the urban transportation system influences or exacerbates the many issues of urban heat. This dissertation focuses on advancing the understanding of how modern urban transportation influences urban heat and human heat exposure through three research objectives: 1) Investigate how human activity results in different outdoor heat exposure; 2) Quantify the growth and extent of urban parking infrastructure; and 3) Model and analyze how pavements and vehicles contribute to urban heat.

In the urban US, traveling outdoors (e.g. biking or walking) is the most frequent activity to cause heat exposure during hot periods. However, outdoor travel durations are often very short, and other longer activities such as outdoor housework and recreation contribute more to cumulative urban heat exposure. In Phoenix, parking and roadway pavement infrastructure contributes significantly to the urban heat balance, especially during summer afternoons, and vehicles only contribute significantly in local areas with high density rush hour vehicle travel. Future development of urban areas (especially those with concerns of extreme heat) should focus on ensuring access and mobility for its inhabitants without sacrificing thermal comfort. This may require urban redesign of transportation systems to be less auto-centric, but without clear pathways to mitigating impacts of urban heat, it may be difficult to promote transitions to travel modes that inherently necessitate heat exposure. Transportation planners and engineers need to be cognizant of the pathways to increased urban heat and human heat exposure when planning and designing urban transportation systems.

ContributorsHoehne, Christopher Glenn (Author) / Chester, Mikhail V (Thesis advisor) / Hondula, David M. (Committee member) / Sailor, David (Committee member) / Pendyala, Ram M. (Committee member) / Arizona State University (Publisher)
Created2019
156665-Thumbnail Image.png
Description
This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using

This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product and a time-series trend analysis to discover areas that experienced significant changes of SUHI intensity between 2000 and 2017. The heating and cooling effects of different urban land use land cover (LULC) types was also examined using classified Landsat satellite images. The second chapter is focused on urban ET and the impacts of urban LULC change on ET. An empirical model of urban ET for PMA was built using flux tower data and MODIS land products using multivariate regression analysis. A time-series trend analysis was then performed to discover areas in PMA that experienced significant changes of ET between 2001 and 2015. The impact of urban LULC change on ET was examined using classified LULC maps. The third chapter models urban OWU in PMA using a surface energy balance model named METRIC (Mapping Evapotranspiration at high spatial Resolution with Internalized Calibration) and time-series Landsat Thematic Mapper 5 imagery for 2010. The relationship between urban LULC types and OWU was examined with the use of very high-resolution land cover classification data generated from the National Agriculture Imagery Program (NAIP) imagery and regression analysis. Socio-demographic variables were selected from census data at the census track level and analyzed against OWU to study their relationship using correlation analysis. This dissertation makes significant contributions and expands the knowledge of long-term urban climate dynamics for PMA and the influence of urban expansion and LULC change on regional climate. Research findings and results can be used to provide constructive suggestions to urban planners, decision-makers, and city managers to formulate new policies and regulations when planning new constructions for the purpose of sustainable development for a desert city.
ContributorsWang, Chuyuan (Author) / Myint, Soe W. (Thesis advisor) / Brazel, Anthony J. (Committee member) / Wang, Zhihua (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2018