Matching Items (15)
Filtering by

Clear all filters

141435-Thumbnail Image.png
Description

Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite

Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona's Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C).

Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for hydrologic impacts in addition to continued focus on mean temperature effects.

ContributorsGeorgescu, Matei (Author) / Mahalov, A. (Author) / Moustaoui, M. (Author)
Created2012-09-07
141439-Thumbnail Image.png
Description

The urban heat island effect is especially significant in semi-arid climates, generating a myriad of problems for large urban areas. Green space can mitigate warming, providing cooling benefits important to reducing energy consumption and improving human health. The arrangement of green space to reap the full potential of cooling benefits

The urban heat island effect is especially significant in semi-arid climates, generating a myriad of problems for large urban areas. Green space can mitigate warming, providing cooling benefits important to reducing energy consumption and improving human health. The arrangement of green space to reap the full potential of cooling benefits is a challenge, especially considering the diurnal variations of urban heat island effects. Surprisingly, methods that support the strategic placement of green space in the context of urban heat island are lacking. Integrating geographic information systems, remote sensing, spatial statistics and spatial optimization, we developed a framework to identify the best locations and configuration of new green space with respect to cooling benefits. The developed multi-objective model is applied to evaluate the diurnal cooling trade-offs in Phoenix, Arizona. As a result of optimal green space placement, significant cooling potentials can be achieved. A reduction of land surface temperature of approximately 1–2 °C locally and 0.5 °C regionally can be achieved by the addition of new green space. 96% of potential day and night cooling benefits can be achieved through simultaneous consideration. The results also demonstrate that clustered green space enhances local cooling because of the agglomeration effect; whereas, dispersed patterns lead to greater overall regional cooling. The optimization based framework can effectively inform planning decisions with regard to green space allocation to best ameliorate excessive heat.

ContributorsZhang, Yujia (Author) / Murray, Alan T. (Author) / Turner, II, B.L. (Author)
Created2017-07-31
141440-Thumbnail Image.png
Description

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the wall temperature and building energy consumption. At a regional scale, various pavement types were also found to have a limited cooling effect on land surface temperature and 2-m air temperature for metropolitan Phoenix. In the context of global climate change, the effect of pavement was evaluated in terms of the equivalent CO2 emission. Equivalent CO2 emission offset by reflective pavements in urban canyons was only about 13.9e46.6% of that without building canopies, depending on the canyon geometry. This study revealed the importance of building-environment thermal interactions in determining thermal conditions inside the urban canopy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Dylla, Heather (Author)
Created2016-08-22
141446-Thumbnail Image.png
Description

We investigated the spatial and temporal variation in June mean minimum temperatures for weather stations in and around metropolitan Phoenix, USA, for the period 1990 to 2004. Temperature was related to synoptic conditions, location in urban development zones (DZs), and the pace of housing construction in a 1 km buffer

We investigated the spatial and temporal variation in June mean minimum temperatures for weather stations in and around metropolitan Phoenix, USA, for the period 1990 to 2004. Temperature was related to synoptic conditions, location in urban development zones (DZs), and the pace of housing construction in a 1 km buffer around fixed-point temperature stations. June is typically clear and calm, and dominated by a dry, tropical air mass with little change in minimum temperature from day to day. However, a dry, moderate weather type accounted for a large portion of the inter-annual variability in mean monthly minimum temperature. Significant temperature variation was explained by surface effects captured by the type of urban DZ, which ranged from urban core and infill sites, to desert and agricultural fringe locations, to exurban. An overall spatial urban effect, derived from the June monthly mean minimum temperature, is in the order of 2 to 4 K. The cumulative housing build-up around weather sites in the region was significant and resulted in average increases of 1.4 K per 1000 home completions, with a standard error of 0.4 K. Overall, minimum temperatures were spatially and temporally accounted for by variations in weather type, type of urban DZ (higher in core and infill), and the number of home completions over the period. Results compare favorably with the magnitude of heating by residential development cited by researchers using differing methodologies in other urban areas.

ContributorsBrazel, Anthony J. (Author) / Gober, Patricia (Author) / Lee, Seung-Jae (Author) / Grossman-Clarke, Susanne (Author) / Zehnder, Joseph (Author) / Hedquist, Brent (Author) / Comparri, Erin (Author)
Created2007-02-22
141371-Thumbnail Image.png
Description

We use the Northeast US Urban Climate Archipelago as a case study to explore three key limitations of planning and policy initiatives to mitigate extreme urban heat. These limitations are: (1) a lack of understanding of spatial considerations—for example, how nearby urban areas interact, affecting, and being affected by, implementation

We use the Northeast US Urban Climate Archipelago as a case study to explore three key limitations of planning and policy initiatives to mitigate extreme urban heat. These limitations are: (1) a lack of understanding of spatial considerations—for example, how nearby urban areas interact, affecting, and being affected by, implementation of such policies; (2) an emphasis on air temperature reduction that neglects assessments of other important meteorological parameters, such as humidity, mixing heights, and urban wind fields; and (3) too narrow of a temporal focus—either time of day, season, or current vs. future climates. Additionally, the absence of a direct policy/planning linkage between heat mitigation goals and actual human health outcomes, in general, leads to solutions that only indirectly address the underlying problems. These issues are explored through several related atmospheric modeling case studies that reveal the complexities of designing effective urban heat mitigation strategies. We conclude with recommendations regarding how policy-makers can optimize the performance of their urban heat mitigation policies and programs. This optimization starts with a thorough understanding of the actual end-point goals of these policies, and concludes with the careful integration of scientific knowledge into the development of location-specific strategies that recognize and address the limitations discussed herein.

ContributorsSailor, David (Author) / Shepherd, Marshall (Author) / Sheridan, Scott (Author) / Stone, Brian (Author) / Laurence, Kalkstein (Author) / Russell, Armistead (Author) / Vargo, Jason (Author) / Andersen, Theresa (Author)
Created2016-10-12
141380-Thumbnail Image.png
Description

Urban Heat Island (UHI) has significant impacts on the buildings energy consumption and outdoor air quality (OAQ). Various approaches, including observation and simulation techniques, have been proposed to understand the causes of UHI formation and to find the corresponding mitigation strategies. However, the causes of UHI are not the same

Urban Heat Island (UHI) has significant impacts on the buildings energy consumption and outdoor air quality (OAQ). Various approaches, including observation and simulation techniques, have been proposed to understand the causes of UHI formation and to find the corresponding mitigation strategies. However, the causes of UHI are not the same in different climates or city features. Thus, general conclusion cannot be made based on limited monitoring data.

With recent progress in computational tools, simulation methods have been used to study UHI. These approaches, however, are also not able to cover all the phenomena that simultaneously contribute to the formation of UHI. The shortcomings are mostly attributed to the weakness of the theories and computational cost.

This paper presents a review of the techniques used to study UHI. The abilities and limitations of each approach for the investigation of UHI mitigation and prediction are discussed. Treatment of important parameters including latent, sensible, storage, and anthropogenic heat in addition to treatment of radiation, effect of trees and pond, and boundary condition to simulate UHI is also presented. Finally, this paper discusses the application of integration approach as a future opportunity.

ContributorsMirzaei, Parham A. (Author) / Haghighat, Fariborz (Author)
Created2010-04-11
141382-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Raymond (Author)
Created2015
141385-Thumbnail Image.png
Description

Phoenix and neighboring municipalities, like many in the South and West, pursued a growth strategy based on annexation in the decades after the second world war. This article explores the link between annexation and competition for tax revenues. After discussing arguments for annexation, it traces the history of annexation in

Phoenix and neighboring municipalities, like many in the South and West, pursued a growth strategy based on annexation in the decades after the second world war. This article explores the link between annexation and competition for tax revenues. After discussing arguments for annexation, it traces the history of annexation in the Phoenix metropolitan area. A long‐running series of ‘border wars’ entailed litigation, pre‐emptive annexations and considerable intergovernmental conflict. The article argues that tax revenues have been a key motivation for municipalities to seek annexation, particularly since the 1970s. The timing of annexation was an important component of the strategies of municipal officials. Developers sought urban economic growth, but did not always favor political expansion of municipal boundaries through annexation. The article then considers several related policy issues and argues that while opportunities for annexation are becoming more limited, competition for tax revenues (particularly sales‐tax revenues) continues to be fierce, creating dilemmas for municipalities in the region.

ContributorsHeim, Carol E. (Author)
Created2011-04-15
141391-Thumbnail Image.png
Description

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This growth has manifested itself as a cause of various impacts including elevated urban temperatures in comparison to rural sites known as the Urban Heat Island (UHI) effect [Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 108, 1–24]. Related are the increased demands for electric power as a result of population growth and increased need for mechanical cooling due to the UHI. In the United States, the Environmental Protection Agency has developed a three-prong approach of (1) cool pavements, (2) urban forestry and (3) cool roofs to mitigate the UHI. Researchers undertook an examination of micro scale benefits of the utilization of photovoltaic panels to reduce the thermal impacts to surface temperatures of pavements in comparison to urban forestry. The results of the research indicate that photovoltaic panels provide a greater thermal reduction benefit during the diurnal cycle in comparison to urban forestry while also providing the additional benefits of supporting peak energy demand, conserving water resources and utilizing a renewable energy source.

ContributorsGolden, Jay S. (Author) / Carlson, Joby (Author) / Kaloush, Kamil (Author) / Phelan, Patrick (Author)
Created2006-12-26
141397-Thumbnail Image.png
Description

We conducted microclimate simulations in ENVI-Met 3.1 to evaluate the impact of vegetation in lowering temperatures during an extreme heat event in an urban core neighborhood park in Phoenix, Arizona. We predicted air and surface temperatures under two different vegetation regimes: existing conditions representative of Phoenix urban core neighborhoods, and

We conducted microclimate simulations in ENVI-Met 3.1 to evaluate the impact of vegetation in lowering temperatures during an extreme heat event in an urban core neighborhood park in Phoenix, Arizona. We predicted air and surface temperatures under two different vegetation regimes: existing conditions representative of Phoenix urban core neighborhoods, and a proposed scenario informed by principles of landscape design and architecture and Urban Heat Island mitigation strategies. We found significant potential air and surface temperature reductions between representative and proposed vegetation scenarios:

1. A Park Cool Island effect that extended to non-vegetated surfaces.
2. A net cooling of air underneath or around canopied vegetation ranging from 0.9 °C to 1.9 °C during the warmest time of the day.
3. Potential reductions in surface temperatures from 0.8 °C to 8.4 °C in areas underneath or around vegetation.

ContributorsDeclet-Barreto, Juan (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Chow, Winston, 1951- (Author) / Harlan, Sharon L. (Author)
Created2012-12-21