Matching Items (410)
Filtering by

Clear all filters

152041-Thumbnail Image.png
Description
The characteristics of the wintertime 500hPa height surface, the level of non-divergence and used for identifying/observing synoptic-scale features (ridges and troughs), and their impact on precipitation are of significance to forecasters, natural resource managers and planners across the southwestern United States. For this study, I evaluated the location of the

The characteristics of the wintertime 500hPa height surface, the level of non-divergence and used for identifying/observing synoptic-scale features (ridges and troughs), and their impact on precipitation are of significance to forecasters, natural resource managers and planners across the southwestern United States. For this study, I evaluated the location of the 500hPa mean Pacific ridge axis over the winter for the period of 1948/49 to 2011/12 and derived the mean ridge axis in terms of location (longitude) and intensity (geopotential meters) from the NCEP/NCAR Reanalysis dataset. After deriving a mean ridge axis climatology and analyzing its behavior over time, I correlated mean location and intensity values to observed wintertime precipitation in select U.S. Climate Divisions in Arizona, Colorado, Nevada, Utah and New Mexico. This resulted in two findings. First specific to the 500hPa ridge behavior, the ridge has been moving eastward and also has been intensifying through time. Second, results involving correlation tests between mean ridge location and intensity indicate precipitation across the selected Southwest Climate Divisions are strongly related to mean ridge intensity slightly more than ridge location. The relationships between mean ridge axis and observed precipitation also are negative, indicating an increase of one of the ridge parameters (i.e. continued eastward movement or intensification) lead to drier winter seasons across the Southwest. Increased understanding of relationships between upper-level ridging and observed wintertime precipitation aids in natural resource planning for an already arid region that relies heavily on winter precipitation.
ContributorsNolte, Jessica Marie (Author) / Cerveny, Randall S. (Thesis advisor) / Selover, Nancy J. (Committee member) / Brazel, Anthony J. (Committee member) / Arizona State University (Publisher)
Created2013
151543-Thumbnail Image.png
Description
The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases

The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases since 1995 with CMIP5 being the state of the art. In parallel, an organized effort to consolidate all observational data in the past century culminates in the creation of several "reanalysis" datasets that are considered the closest representation of the true observation. This study compared the climate variability and trend in the climate model simulations and observations on the timescales ranging from interannual to centennial. The analysis focused on the dynamic climate quantity of zonal-mean zonal wind and global atmospheric angular momentum (AAM), and incorporated multiple datasets from reanalysis and the most recent CMIP3 and CMIP5 archives. For the observation, the validation of AAM by the length-of-day (LOD) and the intercomparison of AAM revealed a good agreement among reanalyses on the interannual and the decadal-to-interdecadal timescales, respectively. But the most significant discrepancies among them are in the long-term mean and long-term trend. For the simulations, the CMIP5 models produced a significantly smaller bias and a narrower ensemble spread of the climatology and trend in the 20th century for AAM compared to CMIP3, while CMIP3 and CMIP5 simulations consistently produced a positive trend for the 20th and 21st century. Both CMIP3 and CMIP5 models produced a wide range of the magnitudes of decadal and interdecadal variability of wind component of AAM (MR) compared to observation. The ensemble means of CMIP3 and CMIP5 are not statistically distinguishable for either the 20th- or 21st-century runs. The in-house atmospheric general circulation model (AGCM) simulations forced by the sea surface temperature (SST) taken from the CMIP5 simulations as lower boundary conditions were carried out. The zonal wind and MR in the CMIP5 simulations are well simulated in the AGCM simulations. This confirmed SST as an important mediator in regulating the global atmospheric changes due to GHG effect.
ContributorsPaek, Houk (Author) / Huang, Huei-Ping (Thesis advisor) / Adrian, Ronald (Committee member) / Wang, Zhihua (Committee member) / Anderson, James (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
152977-Thumbnail Image.png
Description
Climate and its influence on hydrology and weathering is a key driver of surface processes on Earth. Despite its clear importance to hazard generation, fluvial sediment transport and erosion, the drawdown of atmospheric CO2 via the rock cycle, and feedbacks between climate and tectonics, quantifying climatic controls on long-term erosion

Climate and its influence on hydrology and weathering is a key driver of surface processes on Earth. Despite its clear importance to hazard generation, fluvial sediment transport and erosion, the drawdown of atmospheric CO2 via the rock cycle, and feedbacks between climate and tectonics, quantifying climatic controls on long-term erosion rates has proven to be one of the grand problems in geomorphology. In fact, recent attempts addressing this problem using cosmogenic radionuclide (CRN) derived erosion rates suggest very weak climatic controls on millennial-scale erosion rates contrary to expectations. In this work, two challenges are addressed that may be impeding progress on this problem.

The first challenge is choosing appropriate climate metrics that are closely tied to erosional processes. For example, in fluvial landscapes, most runoff events do little to no geomorphic work due to erosion thresholds, and event-scale variability dictates how frequently these thresholds are exceeded. By analyzing dense hydroclimatic datasets in the contiguous U.S. and Puerto Rico, we show that event-scale runoff variability is only loosely related to event-scale rainfall variability. Instead, aridity and fractional evapotranspiration (ET) losses are much better predictors of runoff variability. Importantly, simple hillslope-scale soil water balance models capture major aspects of the observed relation between runoff variability and fractional ET losses. Together, these results point to the role of vegetation water use as a potential key to relating mean hydrologic partitioning with runoff variability.

The second challenge is that long-term erosion rates are expected to balance rock uplift rates as landscapes approach topographic steady state, regardless of hydroclimatic setting. This is illustrated with new data along the Main Gulf Escarpment, Baja, Mexico. Under this conceptual framework, climate is not expected to set the erosion rate, but rather the erosional efficiency of the system, or the steady-state relief required for erosion to keep up with tectonically driven uplift rates. To assess differences in erosional efficiency across landscapes experiencing different climatic regimes, we contrast new CRN data from tectonically active landscapes in Baja, Mexico and southern California (arid) with northern Honduras (very humid) alongside other published global data from similar hydroclimatic settings. This analysis shows how climate does, in fact, set functional relationships between topographic metrics like channel steepness and long-term erosion rates. However, we also show that relatively small differences in rock erodibility and incision thresholds can easily overprint hydroclimatic controls on erosional efficiency motivating the need for more field based constraints on these important variables.
ContributorsRossi, Matthew (Author) / Whipple, Kelin X (Thesis advisor) / DeVecchio, Duane E (Committee member) / Vivoni, Enrique R (Committee member) / Arrowsmith, J Ramon (Committee member) / Heimsath, Arjun M (Committee member) / Arizona State University (Publisher)
Created2014
153721-Thumbnail Image.png
Description
Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research ga

Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research gap in emerging nations concerning this topic. Thus, this research focuses on the assessment of climate impacts related to urbanization on the largest metropolitan area in Latin America: Mexico City.

Numerical simulations using a state-of-the-science regional climate model are utilized to address a trio of scientifically relevant questions with wide global applicability. The importance of an accurate representation of land use and land cover is first demonstrated through comparison of numerical simulations against observations. Second, the simulated effect of anthropogenic heating is quantified. Lastly, numerical simulations are performed using pre-historic scenarios of land use and land cover to examine and quantify the impact of Mexico City's urban expansion and changes in surface water features on its regional climate.
ContributorsBenson-Lira, Valeria (Author) / Georgescu, Matei (Thesis advisor) / Brazel, Anthony (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsEvans, Bartlett R. (Conductor) / Schildkret, David (Conductor) / Glenn, Erica (Conductor) / Concert Choir (Performer) / Chamber Singers (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-16
155108-Thumbnail Image.png
Description
The proper quantification and visualization of uncertainty requires a high level of domain knowledge. Despite this, few studies have collected and compared the roles, experiences and opinions of scientists in different types of uncertainty analysis. I address this gap by conducting two types of studies: 1) a domain characterization study

The proper quantification and visualization of uncertainty requires a high level of domain knowledge. Despite this, few studies have collected and compared the roles, experiences and opinions of scientists in different types of uncertainty analysis. I address this gap by conducting two types of studies: 1) a domain characterization study with general questions for experts from various fields based on a recent literature review in ensemble analysis and visualization, and; 2) a long-term interview with domain experts focusing on specific problems and challenges in uncertainty analysis. From the domain characterization, I identified the most common metrics applied for uncertainty quantification and discussed the current visualization applications of these methods. Based on the interviews with domain experts, I characterized the background and intents of the experts when performing uncertainty analysis. This enables me to characterize domain needs that are currently underrepresented or unsupported in the literature. Finally, I developed a new framework for visualizing uncertainty in climate ensembles.
ContributorsLiang, Xing (Author) / Maciejewski, Ross (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2016
155444-Thumbnail Image.png
Description
This is a two-part thesis assessing the long-term reliability of photovoltaic modules.

Part 1: Manufacturing dependent reliability - Adapting FMECA for quality control in PV module manufacturing

This part is aimed at introducing a statistical tool in quality assessments in PV module manufacturing. Developed jointly by ASU-PRL and Clean Energy Associates,

This is a two-part thesis assessing the long-term reliability of photovoltaic modules.

Part 1: Manufacturing dependent reliability - Adapting FMECA for quality control in PV module manufacturing

This part is aimed at introducing a statistical tool in quality assessments in PV module manufacturing. Developed jointly by ASU-PRL and Clean Energy Associates, this work adapts the Failure Mode Effect and Criticality Analysis (FMECA, IEC 60812) to quantify the impact of failure modes observed at the time of manufacturing. The method was developed through analysis of nearly 9000 modules at the pre-shipment evaluation stage in module manufacturing facilities across south east Asia. Numerous projects were analyzed to generate RPN (Risk Priority Number) scores for projects. In this manner, it was possibly to quantitatively assess the risk being carried the project at the time of shipment of modules. The objective of this work was to develop a benchmarking system that would allow for accurate quantitative estimations of risk mitigation and project bankability.

Part 2: Climate dependent reliability - Activation energy determination for climate specific degradation modes

This work attempts to model the parameter (Isc or Rs) degradation rate of modules as a function of the climatic parameters (i.e. temperature, relative humidity and ultraviolet radiation) at the site. The objective of this work was to look beyond the power degradation rate and model based on the performance parameter directly affected by the degradation mode under investigation (encapsulant browning or IMS degradation of solder bonds). Different physical models were tested and validated through comparing the activation energy obtained for each degradation mode. It was concluded that, for the degradation of the solder bonds within the module, the Pecks equation (function of temperature and relative humidity) modelled with Rs increase was the best fit; the activation energy ranging from 0.4 – 0.7 eV based on the climate type. For encapsulant browning, the Modified Arrhenius equation (function of temperature and UV) seemed to be the best fit presently, yielding an activation energy of 0.3 eV. The work was concluded by suggesting possible modifications to the models based on degradation pathways unaccounted for in the present work.
ContributorsPore, Shantanu (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Thesis advisor) / Srinivasan, Devrajan (Committee member) / Arizona State University (Publisher)
Created2017
137869-Thumbnail Image.png
Description
Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each

Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each grade level. This thesis project teaches the practical skills of weather map reading and weather forecasting through the creation and execution of an after school lesson with the aide of seven teen assistants.
ContributorsChoulet, Shayna (Author) / Walters, Debra (Thesis director) / Oliver, Jill (Committee member) / Balling, Robert (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
ContributorsOwen, Ken (Conductor) / McDevitt, Mandy L. M. (Performer) / Larson, Brook (Conductor) / Wang, Lin-Yu (Performer) / Jacobs, Todd (Performer) / Morehouse, Daniel (Performer) / Magers, Kristen (Performer) / DeGrow, Gary (Performer) / DeGrow, Richard (Performer) / Women's Chorus (Performer) / Sun Devil Singers (Performer) / ASU Library. Music Library (Publisher)
Created2004-03-24
ContributorsMetz, John (Performer) / Sowers, Richard (Performer) / Collegium Musicum (Performer) / ASU Library. Music Library (Publisher)
Created1983-01-29