Matching Items (2)
Filtering by

Clear all filters

156674-Thumbnail Image.png
Description
Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and

Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and fluid intelligence. Experiments 1 and 2 were designed to assess whether individual differences in strategic behavior contribute to the variance shared between working memory capacity and fluid intelligence. In Experiment 3, competing theories for describing the underlying processes (cognitive vs. strategy) were evaluated in a comprehensive examination of potential underlying mechanisms. These data help inform existing theories about the mechanisms underlying the relation between WMC and gF. However, these data also indicate that the current theoretical model of the shared variance between WMC and gF would need to be revised to account for the data in Experiment 3. Possible sources of misfit are considered in the discussion along with a consideration of the theoretical implications of observing those relations in the Experiment 3 data.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / McNamara, Danielle (Thesis advisor) / McClure, Samuel (Committee member) / Redick, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
158795-Thumbnail Image.png
Description
Temporal-order judgments can require integration of self-generated action-events and external sensory information. In a previous study, it was found that participants are biased to perceive one’s own action-events to occur prior to simultaneous external events. This phenomenon, named the “Egocentric Temporal Order Bias”, or ETO bias, was demonstrated as a

Temporal-order judgments can require integration of self-generated action-events and external sensory information. In a previous study, it was found that participants are biased to perceive one’s own action-events to occur prior to simultaneous external events. This phenomenon, named the “Egocentric Temporal Order Bias”, or ETO bias, was demonstrated as a 67% probability for participants to report self-generated events as occurring prior to simultaneous externally-determined events. These results were interpreted as supporting a feed-forward, constructive model of perception. However, the empirical data could support many potential mechanisms. The present study tests whether the ETO bias is driven by attentional differences, feed-forward predictability, or action. These findings support that participants exhibit a bias due to both feed-forward predictability and action, and a Bayesian analysis supports that these effects are quantitatively unique. Therefore, the results indicate that the ETO bias is largely driven by one’s own action, over and above feed-forward predictability.
ContributorsTang, Tim (Author) / Mcbeath, Michael K (Thesis advisor) / Brewer, Gene A. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2020