Matching Items (2)
Filtering by

Clear all filters

153527-Thumbnail Image.png
Description
The shortest path between two locations is important for spatial analysis, location modeling, and wayfinding tasks. Depending on permissible movement and availability of data, the shortest path is either derived from a pre-defined transportation network or constructed in continuous space. However, continuous space movement adds substantial complexity to identifying the

The shortest path between two locations is important for spatial analysis, location modeling, and wayfinding tasks. Depending on permissible movement and availability of data, the shortest path is either derived from a pre-defined transportation network or constructed in continuous space. However, continuous space movement adds substantial complexity to identifying the shortest path as the influence of obstacles has to be considered to avoid errors and biases in a derived path. This obstacle-avoiding shortest path in continuous space has been referred to as Euclidean shortest path (ESP), and attracted the attention of many researchers. It has been proven that constructing a graph is an effective approach to limit infinite search options associated with continuous space, reducing the problem to a finite set of potential paths. To date, various methods have been developed for ESP derivation. However, their computational efficiency is limited due to fundamental limitations in graph construction. In this research, a novel algorithm is developed for efficient identification of a graph guaranteed to contain the ESP. This new approach is referred to as the convexpath algorithm, and exploits spatial knowledge and GIS functionality to efficiently construct a graph. The convexpath algorithm utilizes the notion of a convex hull to simultaneously identify relevant obstacles and construct the graph. Additionally, a spatial filtering technique based on intermediate shortest path is enhances intelligent identification of relevant obstacles. Empirical applications show that the convexpath algorithm is able to construct a graph and derive the ESP with significantly improved efficiency compared to visibility and local visibility graph approaches. Furthermore, to boost the performance of convexpath in big data environments, a parallelization approach is proposed and applied to exploit computationally intensive spatial operations of convexpath. Multicore CPU parallelization demonstrates noticeable efficiency gain over the sequential convexpath. Finally, spatial representation and approximation issues associated with raster-based approximation of the ESP are assessed. This dissertation provides a comprehensive treatment of the ESP, and details an important approach for deriving an optimal ESP in real time.
ContributorsHong, Insu (Author) / Murray, Alan T. (Thesis advisor) / Kuby, Micheal (Committee member) / Rey, Sergio (Committee member) / Arizona State University (Publisher)
Created2015
137740-Thumbnail Image.png
Description
In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and

In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and standard distance analyses for each year of data for non-resident (out-of-state) freshmen home zip codes. Another strategy, a Poisson regression model, revealed recruitment "hot and cold spots" across the U.S. to project the expected counts of Barrett freshmen by zip code. This projected count served as a comparison for the actual admissions data, where zip codes with over and under predictions represented cold and hot spots, respectively. The mean center analysis revealed a westward shift from 2007 to 2012 with similar distance dispersions. The Poisson model projected zero-student zip codes with 99.2% accuracy and non-zero zip codes with 73.8% accuracy. Norwalk, CA (90650) and New York, NY (10021) represented the top out-of-state cold spot zip codes, while the model indicated that Chandler, AZ (85249) and Queen Creek, AZ (85242) had the most in-state potential for recruitment. The model indicated that more students have come from Albuquerque, NM (87122) and Aurora, CO (80015) than anticipated, while Phoenix, AZ (85048) and Tempe, AZ (85284) represent in-state locations with higher correlations between the variables included, especially regarding distance decay, and the than expected numbers of freshmen. The regression also indicated the existence of strong likelihood of attracting Barrett students.
ContributorsKostanick, Megan Elizabeth (Author) / Rey, Sergio (Thesis director) / Dorn, Ron (Committee member) / Koschinsky, Julia (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Politics and Global Studies (Contributor)
Created2013-05