Matching Items (7)

137632-Thumbnail Image.png

Differential Effects of Causality and Correlation on Inference

Description

A category is a set of entities associated by specific characteristics (features). These features can have different relations between one another, including correlations and causal connections. The purpose of this

A category is a set of entities associated by specific characteristics (features). These features can have different relations between one another, including correlations and causal connections. The purpose of this study was to examine how the relations between features would affect the inference of unknown features of new entities from a given set of features. Categories and their relations were learned in a Learning Phase, whereas features were inferred in Transfer and Selection Phases. Correct inference of feature was enhanced by correlation between the features given and the features inferred. It is less clear whether causal connections further enhanced correct inference of features over and above the effect of the correlation. Future research of this topic may benefit from utilizing more difficult tasks, repeating instructions, or manipulating the participants' understanding of the relation in ways other than administration of instructions.

Contributors

Agent

Created

Date Created
  • 2013-05

150150-Thumbnail Image.png

Isomorphic categories

Description

Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of

Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of three non-overlapping, linearly-separable categories. Each stimulus was composed of a sequence of on-off events that varied in duration and number of sub-events (complexity). Categories were learned visually, haptically, or auditorily, and transferred to the same or an alternate modality. The transfer set contained old, new, and prototype stimuli, and subjects made both classification and recognition judgments. The results showed an early learning advantage in the visual modality, with transfer performance varying among the conditions in both classification and recognition. In general, classification accuracy was highest for the category prototype, with false recognition of the category prototype higher in the cross-modality conditions. The results are discussed in terms of current theories in modality transfer, and shed preliminary light on categorical transfer of temporal stimuli.

Contributors

Agent

Created

Date Created
  • 2011

153874-Thumbnail Image.png

Distinguishing emergent and sequential processes by learning emergent second-order features

Description

Emergent processes can roughly be defined as processes that self-arise from interactions without a centralized control. People have many robust misconceptions in explaining emergent process concepts such as natural selection

Emergent processes can roughly be defined as processes that self-arise from interactions without a centralized control. People have many robust misconceptions in explaining emergent process concepts such as natural selection and diffusion. This is because they lack a proper categorical representation of emergent processes and often misclassify these processes into the sequential processes category that they are more familiar with. The two kinds of processes can be distinguished by their second-order features that describe how one interaction relates to another interaction. This study investigated if teaching emergent second-order features can help people more correctly categorize new processes, it also compared different instructional methods in teaching emergent second-order features. The prediction was that learning emergent features should help more than learning sequential features because what most people lack is the representation of emergent processes. Results confirmed this by showing participants who generated emergent features and got correct features as feedback were better at distinguishing two kinds of processes compared to participants who rewrote second-order sequential features. Another finding was that participants who generated emergent features followed by reading correct features as feedback did better in distinguishing the processes than participants who only attempted to generate the emergent features without feedback. Finally, switching the order of instruction by teaching emergent features and then asking participants to explain the difference between emergent and sequential features resulted in equivalent learning gain as the experimental group that received feedback. These results proved teaching emergent second-order features helps people categorize processes and demonstrated the most efficient way to teach them.

Contributors

Agent

Created

Date Created
  • 2015

152920-Thumbnail Image.png

Grounding concepts: physical interaction can provide minor benefit to category learning

Description

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we may define these complex categories such as chairs, tables, or stairs by understanding the simpler rules defined by potential interactions with these objects. This concept, called grounding, allows for the learning and transfer of complex categorization rules if said rules are capable of being expressed in a more simple fashion by virtue of meaningful physical interactions. The present experiment tested this hypothesis by having participants engage in either a Rule Based (RB) or Information Integration (II) categorization task with instructions to engage with the stimuli in either a non-interactive or interactive fashion. If participants were capable of grounding the categories, which were defined in the II task with a complex visual rule, to a simpler interactive rule, then participants with interactive instructions should outperform participants with non-interactive instructions. Results indicated that physical interaction with stimuli had a marginally beneficial effect on category learning, but this effect seemed most prevalent in participants were engaged in an II task.

Contributors

Agent

Created

Date Created
  • 2014

152859-Thumbnail Image.png

Categorical contextual cueing in visual search

Description

Previous research has shown that people can implicitly learn repeated visual contexts and use this information when locating relevant items. For example, when people are presented with repeated spatial configurations

Previous research has shown that people can implicitly learn repeated visual contexts and use this information when locating relevant items. For example, when people are presented with repeated spatial configurations of distractor items or distractor identities in visual search, they become faster to find target stimuli in these repeated contexts over time (Chun and Jiang, 1998; 1999). Given that people learn these repeated distractor configurations and identities, might they also implicitly encode semantic information about distractors, if this information is predictive of the target location? We investigated this question with a series of visual search experiments using real-world stimuli within a contextual cueing paradigm (Chun and Jiang, 1998). Specifically, we tested whether participants could learn, through experience, that the target images they are searching for are always located near specific categories of distractors, such as food items or animals. We also varied the spatial consistency of target locations, in order to rule out implicit learning of repeated target locations. Results suggest that participants implicitly learned the target-predictive categories of distractors and used this information during search, although these results failed to reach significance. This lack of significance may have been due the relative simplicity of the search task, however, and several new experiments are proposed to further investigate whether repeated category information can benefit search.

Contributors

Agent

Created

Date Created
  • 2014

152061-Thumbnail Image.png

The limitations and extent of category generalization within a partially learned hierarchical structure

Description

Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored.

Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit well with other work focusing on attention during and after category learning. The current work attempted to merge these two areas of by creating a category structure with the best chance to detect generalization. Participants learned order level bird categories and family level wading bird categories. Then participants completed multiple measures to test generalization to old wading bird categories, new wading bird categories, owl and raptor categories, and lizard categories. As expected, the generalization measures converged on a single overall pattern of generalization. No generalization was found, except for already learned categories. This pattern fits well with past work on generalization within a hierarchy, but do not fit well with theories of dimensional attention. Reasons why these findings do not match are discussed, as well as directions for future research.

Contributors

Agent

Created

Date Created
  • 2013

150044-Thumbnail Image.png

The effect of partial exemplar experience on ill-defined, multi-modal categories

Description

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays in category definition was explained. It was hypothesized that the effects of partial experience are not explained by a shifting of attention between dimensions (Taylor & Ross, 2009) but rather by an increased reliance on prototypical values used to fill in missing information during incomplete experiences. Results indicated that participants (1) do not fill in missing information with prototypical values, (2) integrate information less efficiently between different modalities than within a single modality, and (3) have difficulty learning only when partial experience prevents access to diagnostic information.

Contributors

Agent

Created

Date Created
  • 2011