Matching Items (4)
Filtering by

Clear all filters

152073-Thumbnail Image.png
Description
The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation

The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation and by sedimentation through water. Pluviated soil deposits were liquefied in the small geotechnical centrifuge at the University of California at Davis shared-use National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation (NEES) facility. A soil deposit created by sedimentation through water was liquefied on a small shake table in the Arizona State University geotechnical laboratory. Initial centrifuge tests employed Ottawa 20-30 sand but this material proved to be too coarse to liquefy in the centrifuge. Therefore, subsequent centrifuge tests employed Ottawa F60 sand. The shake table test employed Ottawa 20-30 sand. Recovered cores were stabilized by impregnation with optical grade epoxy and sent to the University of Texas at Austin NSF-supported facility at the University of Texas at Austin for high-resolution CT scanning of geologic media. The local void ratio distribution of a CT-scanned core of Ottawa 20-30 sand evaluated using Avizo® Fire, a commercially available advanced program for image analysis, was compared to the local void ratio distribution established on the same core by analysis of optical images to demonstrate that analysis of the CT scans gave similar results to optical methods. CT scans were subsequently conducted on liquefied and not-liquefied specimens of Ottawa 20-30 sand and Ottawa F60 sand. The resolution of F60 specimens was inadequate to establish the local void ratio distribution. Results of the analysis of the Ottawa 20-30 specimens recovered from the model built for the shake table test showed that liquefaction can substantially influence the variability in local void ratio, increasing the degree of non-homogeneity in the specimen.
ContributorsGutierrez, Angel (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2013
154635-Thumbnail Image.png
Description
The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are

The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are either not applicable to sites near existing infrastructure, or are prohibitively expensive. Recently, laboratory studies have shown the potential for biogeotechnical soil improvement techniques such as microbially induced carbonate precipitation (MICP) to mitigate liquefaction potential in a non-disruptive manner. Multiple microbial processes have been identified for MICP, but only two have been extensively studied. Ureolysis, the most commonly studied process for MICP, has been shown to quickly and efficiently induce carbonate precipitation on particle surfaces and at particle contacts to improve the stiffness, strength, and dilatant behavior of liquefiable soils. However, ureolysis also produces copious amounts of ammonium, a potentially toxic byproduct. The second process studied for MICP, denitrification, has been shown to precipitate carbonate, and hence improve soil properties, much more slowly than ureolysis. However, the byproducts of denitrification, nitrogen and carbon dioxide gas, are non-toxic, and present the added benefit of rapidly desaturating the treated soil. Small amounts of desaturation have been shown to increase the cyclic resistance, and hence the liquefaction resistance, of liquefiable soils. So, denitrification offers the potential to mitigate liquefaction as a two-stage process, with desaturation providing short term mitigation, and MICP providing long term liquefaction resistance. This study presents the results of soil testing, stoichiometric modeling, and microbial ecology characterization to better characterize the potential use of denitrification as a two-stage process for liquefaction mitigation.
ContributorsO'Donnell, Sean (Author) / Kavazanjian, Edward (Thesis advisor) / Rittmann, Bruce (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2016
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
161397-Thumbnail Image.png
Description
Earthquake-induced soil liquefaction poses a significant global threat, especially to vulnerable populations. There are no existing cost-effective techniques for mitigation of liquefaction under or around existing infrastructure. Microbially Induced Desaturation and Precipitation (MIDP) via denitrification is a potentially sustainable, non-disruptive bio-based ground improvement technique under existing structures. MIDP

Earthquake-induced soil liquefaction poses a significant global threat, especially to vulnerable populations. There are no existing cost-effective techniques for mitigation of liquefaction under or around existing infrastructure. Microbially Induced Desaturation and Precipitation (MIDP) via denitrification is a potentially sustainable, non-disruptive bio-based ground improvement technique under existing structures. MIDP has been shown to reduce liquefaction triggering potential under lab conditions in two ways: 1) biogenic gas desaturation in the short-term (treatment within hours to days) and 2) calcium carbonate precipitation and soil strengthening in the long-term (treatment within weeks to months). However, these experiments have not considered MIDP behavior under field stresses and pressures, nor have they considered challenges from process inhibition or microbial competition that may be encountered when upscaled to field applications. This study presents results from centrifuge experiments and simplified modeling to explore scaling effects on biogenic gas formation, distribution, and retention when simulating field pressures and stresses. Experimental results from the centrifuge demonstrated MIDP’s potential to mitigate the potential liquefaction triggering through desaturation. This study also includes the development of a biogeochemical model to explore the impact of water constituents, process inhibition, and alternative biochemical metabolisms on MIDP and the subsequent impact of MIDP on the surrounding environment. The model was used to explore MIDP behavior when varying the source-water used as the substrate recipe solute (i.e., groundwater and seawater) and when varying the electron donor (i.e., acetate, glucose, and molasses) in different substrate recipes. The predicted products and by-products were compared for cases when desaturation was the targeted improvement mechanism and for the case when precipitation was the primary targeted ground improvement mechanism. From these modeling exercises, MIDP can be applied in all tested natural environments and adjusting the substrate recipe may be able to mitigate unwanted long-term environmental impacts. A preliminary techno-economic analysis using information gained from the modeling exercises was performed, which demonstrated MIDP’s potential as a cost-effective technique compared to currently used ground improvement techniques, which can be costly, impractical, and unsustainable. The findings from this study are critical to develop treatment MIDP plans for potential field trials to maximize treatment effectiveness, promote sustainability and cost-effectiveness, and limit unwanted by-products.
ContributorsHall, Caitlyn Anne (Author) / Rittmann, Bruce E. (Thesis advisor) / Kavazanjian, Edward (Thesis advisor) / van Paassen, Leon A. (Committee member) / DeJong, Jason T. (Committee member) / Arizona State University (Publisher)
Created2021