Matching Items (7)
Filtering by

Clear all filters

151347-Thumbnail Image.png
Description
Pharmaceutical and Personal Care Products (PPCPs) are a large, diverse group of emerging contaminants comprised of pharmaceuticals, plasticizers, detergents, and insecticides. Studies have shown that PPCPs are entering aquatic environments, wastewaters, and water supplies. The occurrence of these PPCPs has generated concern resulting in proposed federal legislation that could require

Pharmaceutical and Personal Care Products (PPCPs) are a large, diverse group of emerging contaminants comprised of pharmaceuticals, plasticizers, detergents, and insecticides. Studies have shown that PPCPs are entering aquatic environments, wastewaters, and water supplies. The occurrence of these PPCPs has generated concern resulting in proposed federal legislation that could require control, monitoring, and treatment of Pharmaceutical and Personal Care Products by Publicly Owned Treatment Works (POTWs). This study evaluated the potential financial impact this proposed legislation could have on U.S. POTWs using City of Mesa, Arizona as a model POTW. The current laws concerning PPCPs as well as the proposed legislation were described. The proposed federal legislation would create investigational studies about PPCPs. The studies could lead to regulations concerning the control, monitoring, and treatment of PPCPs by POTWs. The potential financial costs of the following strategies were assessed: multiple barriers concept for PPCP control or prevention programs by POTWs, PPCP monitoring of wastewater, and upgrading POTW treatment technology for PPCP removal. Study results found no new wastewater treatment technologies were economically suitable for POTWs, however, community education and programs such as Household Take-back programs could be financially viable.
ContributorsSteffen-Deaton, Mary (Author) / Olson, Larry (Thesis advisor) / Brown, Albert F. (Committee member) / Hristovski, Kiril D. (Committee member) / Arizona State University (Publisher)
Created2012
152644-Thumbnail Image.png
Description
This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to easily quantify learning outcomes in biogeochemistry and will complement existing concept inventories in geology, chemistry, and biology.
ContributorsMead, Chris (Author) / Anbar, Ariel (Thesis advisor) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Herckes, Pierre (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
153286-Thumbnail Image.png
Description
The atmosphere contains a substantial amount of water soluble organic material, yet despite years of efforts, little is known on the structure, composition and properties of this organic matter. Aqueous phase processing by fogs and clouds of the gas and particulate organic material is poorly understood despite the importance for

The atmosphere contains a substantial amount of water soluble organic material, yet despite years of efforts, little is known on the structure, composition and properties of this organic matter. Aqueous phase processing by fogs and clouds of the gas and particulate organic material is poorly understood despite the importance for air pollution and climate. On one hand, gas phase species can be processed by fog/cloud droplets to form lower volatility species, which upon droplet evaporation lead to new aerosol mass, while on the other hand larger nonvolatile material can be degraded by in cloud oxidation to smaller molecular weight compounds and eventually CO2.

In this work High Performance Size Exclusion Chromatography coupled with inline organic carbon detection (SEC-DOC), Diffusion-Ordered Nuclear Magnetic Resonance spectroscopy (DOSY-NMR) and Fluorescence Excitation-Emission Matrices (EEM) were used to characterize molecular weight distribution, functionality and optical properties of atmospheric organic matter. Fogs, aerosols and clouds were studied in a variety of environments including Central Valley of California (Fresno, Davis), Pennsylvania (Selinsgrove), British Columbia (Whistler) and three locations in Norway. The molecular weight distributions using SEC-DOC showed smaller molecular sizes for atmospheric organic matter compared to surface waters and a smaller material in fogs and clouds compared to aerosol particles, which is consistent with a substantial fraction of small volatile gases that partition into the aqueous phase. Both, cloud and aerosol samples presented a significant fraction (up to 21% of DOC) of biogenic nanoscale material. The results obtained by SEC-DOC were consistent with DOSY-NMR observations.

Cloud processing of organic matter has also been investigated by combining field observations (sample time series) with laboratory experiments under controlled conditions. Observations revealed no significant effect of aqueous phase chemistry on molecular weight distributions overall although during cloud events, substantial differences were apparent between organic material activated into clouds compared to interstitial material. Optical properties on the other hand showed significant changes including photobleaching and an increased humidification of atmospheric material by photochemical aging. Overall any changes to atmospheric organic matter during cloud processing were small in terms of bulk carbon properties, consistent with recent reports suggesting fogs and clouds are too dilute to substantially impact composition.
ContributorsWang, Youliang (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2014
154504-Thumbnail Image.png
Description
Marine pico-cyanobacteria of the genera Synechococcus and Prochlorococcus carry out nearly two thirds of the primary production in oligotrophic oceans. These cyanobacteria are also considered an important constituent of the biological carbon pump, the photosynthetic fixation of CO2 to dissolved and particulate organic carbon and subsequent export to the ocean’s

Marine pico-cyanobacteria of the genera Synechococcus and Prochlorococcus carry out nearly two thirds of the primary production in oligotrophic oceans. These cyanobacteria are also considered an important constituent of the biological carbon pump, the photosynthetic fixation of CO2 to dissolved and particulate organic carbon and subsequent export to the ocean’s interior. But single cells of these cyanobacteria are too small to sink, so their carbon export has to be mediated by aggregate formation and/or consumption by zooplankton that produce sinking fecal pellets. In this dissertation, I investigated for the first time the aggregation of these cyanobacteria by studying the marine Synechococcus sp. strain WH8102 as a model organism. I first found in culture experiments that Synechococcus cells aggregated and that such aggregation of cells was related to the production of transparent exopolymeric particles (TEP), known to provide the main matrix of aggregates of eukaryotic phytoplankton. I also found that despite the lowered growth rates, cells in the nitrogen or phosphorus limited cultures had a higher cell-normalized TEP production and formed a greater total volume of aggregates with higher settling velocities compared to cells in the nutrient replete cultures. I further studied the Synechococcus aggregation in roller tanks that allow the simulation of aggregates settling in the water column, and investigated the effects of the clays kaolinite and bentonite that are commonly found in the ocean. In the roller tanks, Synechococcus cells formed aggregates with diameters of up to 1.4 mm and sinking velocities of up to 440 m/d, comparable to those of larger eukaryotic phytoplankton such as diatoms. In addition, the clay minerals increased the number but reduced the size of aggregates, and their ballasting effects increased the sinking velocity and the carbon export potential of the aggregates. Lastly, I investigated the effects of heterotrophic bacteria on the Synechococcus aggregation, and found that heterotrophic bacteria generally resulted in the formation of fewer, but larger and faster sinking aggregates, and eventually led to an enhanced aggregation of cells and particles. My study contributes to the understanding of the role of marine pico-cyanobacteria in the ecology and biogeochemistry of oligotrophic oceans.
ContributorsDeng, Wei (Author) / Neuer, Susanne (Thesis advisor) / Anbar, Ariel (Committee member) / Passow, Uta (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2016
149532-Thumbnail Image.png
Description
Water quality is a severe problem throughout the world. Much available water is contaminated by pathogenic microbes. This project reviews the traditional process of solar water disinfection in bottles (SODIS), discusses experiments conducted with SODIS bottles modified to thermally enhance the process, analyzes experimental data for modified SODIS containers, and

Water quality is a severe problem throughout the world. Much available water is contaminated by pathogenic microbes. This project reviews the traditional process of solar water disinfection in bottles (SODIS), discusses experiments conducted with SODIS bottles modified to thermally enhance the process, analyzes experimental data for modified SODIS containers, and suggests ways that by which the traditional process can be improved. Traditional SODIS is currently used in many rural parts of developing countries to disinfect water. The process uses ultraviolet rays and thermal effects to inactivate microorganisms that tend to cause diarrheal disease. If a sufficiently high temperature is attained to reach a synergistic UV-thermal effect range, the process of SODIS is about three times faster. However, many factors can inhibit attainment of sufficient heating of water in SODIS bottles in practice. By modifying the bottles to enhance effectiveness of sunlight in increasing the temperature of the water, SODIS can be more effective. In this research, a series of experiments were conducted over a period of four months and15 days at Arizona State University Polytechnic campus in Mesa, Arizona, U.S.A. Four different types of inexpensive materials (black paint, white paint, foam insulation, and aluminized mylar) were used individually or in combination in seven different modified configurations to assess the potential of the modifications to increase the temperatures of water inside 2-liter PET bottles. Experiments were run in triplicate. Temperatures inside the bottles, along with yard temperature, were recorded over time. Graphs were plotted for each set of experiments. The results of these experiment show that several types of modifications increased water temperature during exposure to sunlight. Water in bottles with black paint and foam insulation on the back side attained the highest temperatures, approximately 8-10 degrees Celsius above temperatures attained in plain bottles. The results of these experiments show how several inexpensive, easily obtained materials can significantly enhance the SODIS process.
ContributorsMadan, Samrath (Author) / Edwards, David (Thesis advisor) / Olson, Larry (Committee member) / Peterson, Danny (Committee member) / Arizona State University (Publisher)
Created2011
149657-Thumbnail Image.png
Description
The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to

The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to predict potential problems associated with the newly revised standard. The Toledo CBSA is home to two oil refineries, a glass making industry, several coal fired lime kilns, and a sulfuric acid regeneration plant, The CBSA 3 has coal fired power plants within a 30 mile radius of its center. Additionally, Toledo is a major Great Lakes shipping port visited by both lake and ocean going vessels. As a transportation hub, the area is also traversed by several rail lines which feed four rail switching yards. Impacts of older generation freighters, or "steamers", utilizing high sulfur "Bunker C" fuel oil in the area is also an issue. With the unique challenges presented by an SO2 one hour standard, this study attempted to estimate potential problem areas in advance of any monitoring data being gathered. Based on the publicly available data as inputs, it appears that a significant risk of non-attainment may exist in the Toledo CBSA. However, future on-the-books controls and currently proposed regulatory actions appear to drive the risk below significance by 2015. Any designation as non-attainment should be self-correcting and without need for controls other than those used in these models. The outcomes of this screening study are intended for use as a basis for assessments for other mid-sized, industrial areas without SO2 monitors. The results may also be utilized by industries and planning groups within the Toledo CBSA to address potential issues in advance of monitoring system deployment to lower the risk of attaining long term or perpetual non-attainment status.
ContributorsMyers, Greg Francis (Author) / Olson, Larry (Thesis advisor) / Edwards, David (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019