Matching Items (9)

Filtering by

Clear all filters

149706-Thumbnail Image.png

Government incentives and how they encourage manufacturing facilities to adopt environmental management systems: a look at the efficiency of policy tools

Description

Traditional methods of environmental regulation and enforcement have been questioned over the last decade. Due to the number of environmental regulations, and subsequent cost of enforcement, governments have begun to incentivize the adoption of environmental management systems (EMSs). These

Traditional methods of environmental regulation and enforcement have been questioned over the last decade. Due to the number of environmental regulations, and subsequent cost of enforcement, governments have begun to incentivize the adoption of environmental management systems (EMSs). These management systems encourage companies to better manage their environmental performance voluntarily. It is the purpose of this study to list the types of government incentives that have been used and categorize them into three groups based off of their characteristics. Ten incentive types were identified and put into three categories; (a) reducing the barriers to EMS adoption; (b) enhancing benefits derived from EMS adoption, and (c) rewarding EMS implementers with reduced enforcement. The research shows that each category of incentives encourages different manufacturing facilities to adopt EMSs. Using data from previously conducted case studies and surveys to determine what type of manufacturing facilities are affected, this study finds that government incentives have been shown to have a measurable impact on the decision makers of manufacturing facilities to adopt an EMS. The study concludes that a combination of traditional environmental regulation used with targeted incentives provide the most efficient use of resources by governments.

Contributors

Agent

Created

Date Created
2011

149765-Thumbnail Image.png

Fabrication and evaluation of hematite modified granular activated carbon (GAC) media for arsenic removal from groundwater

Description

The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC

The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC was synthesized by hydrolysis of Fe(III) salts under two Fe (III) initial dosages (0.5M and 2M) and two hydrolysis periods (24 hrs and 72 hrs). The iron content of the fabricated Fe-GAC media ranged from 0.9% to 4.4% Fe/g of the dry media. Pseudo-equilibrium batch test data at pH = 7.7±0.2 in 1mM NaHCO3 buffered ultrapure water and challenge groundwater representative of the Arizona Mexico border region were fitted to a Freundlich isotherm model. The findings suggested that the arsenic adsorption capacity of the metal (hydr)oxide modified GAC media is primarily controlled by the surface area of the media, while the metal content exhibited lesser effect. The adsorption capacity of the media in the model Mexican groundwater matrix was significantly lower for all adsorbent media. Continuous flow short bed adsorber tests (SBA) demonstrated that the adsorption capacity for arsenic in the challenge groundwater was reduced by a factor of 3 to 4 as a result of the mass transport effects. When compared on metal basis, the iron (hydr)oxide modified media performed comparably well as existing commercial media for treatment of arsenic. On dry mass basis, the fabricated media in this study removed less arsenic than their commercial counterparts because the metal content of the commercial media was significantly higher.

Contributors

Agent

Created

Date Created
2011

151895-Thumbnail Image.png

LEED certification: gold standard or gold star

Description

Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one

Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance with LEED certification requirements, there is none. Once awarded, LEED certification does not have a required reporting component to effectively track continued adherence to LEED standards. In addition, there is no expiry tied to the certification; once obtained, a LEED certification rating is presumed to be a valid representation of project certification status. Therefore, LEED lacks a requirement to demonstrate environmental impact of construction materials and building systems over the entire life of the project. Consequently, LEED certification is merely a label rather than a true representation of ongoing adherence to program performance requirements over time. Without continued monitoring and reporting of building design and construction features, and in the absence of recertification requirements, LEED is, in reality, a gold star rather than a gold standard. This thesis examines the lack of required ongoing monitoring, reporting, or recertification requirements following the award by the USGBC of LEED certification; compares LEED with other international programs which do have ongoing reporting or recertification requirements; demonstrates the need and benefit of ongoing reporting or recertification requirements; and explores possible methods for implementation of mandatory reporting requirements within the program.

Contributors

Agent

Created

Date Created
2013

151115-Thumbnail Image.png

Evaluating the need for regulations due to the impact of nitrosamines in public drinking water systems

Description

The purpose of drinking water regulations is to keep our drinking water safe from contaminants. This research reviewed federal regulation including the Contaminant Candidate List (CCL) regulatory process, the public health effects of six nitrosamines in drinking water, analyzes of

The purpose of drinking water regulations is to keep our drinking water safe from contaminants. This research reviewed federal regulation including the Contaminant Candidate List (CCL) regulatory process, the public health effects of six nitrosamines in drinking water, analyzes of occurrence data from Unregulated Contaminant Monitoring Rule (UCMR 2) and suggests how nitrosamines can be regulated. Currently only total trihalomethanes (THM) and haloacetic acids (HA) are regulated at the federal level. However, California has notification action levels and Massachusetts has guidelines of 10 ng/L for nitrosamine concentration. Nitrosamine data collected under the UCMR 2 were analyzed to assess the occurrence and the effect of disinfectant type and source water type. The data showed that N-nitrosodimethylamine (NDMA) was detected in drinking water at concentrations higher than the minimum reporting level (MRL) of 2 ng/L. Four nitrosamines including N-nitroso-diethylamine (NDEA), N-nitroso-di-n-butylamine (NDBA), N-nitroso-methylethylamine (NMEA) and N-nitroso-pyrrolidine (NPYR) and very low detections. N-nitroso-di-n-propylamine (NDPA) was not detected in the sample analyses. NDMA was primarily detected in public water systems using chloramines other than chlorine.

Contributors

Agent

Created

Date Created
2012

150264-Thumbnail Image.png

Study of collocated sources of air pollution and the potential for circumventing regulatory major source permitting requirements near Sun City, Arizona

Description

The following research is a regulatory and emissions analysis of collocated sources of air pollution as they relate to the definition of "major, stationary, sources", if their emissions were amalgamated. The emitting sources chosen for this study are seven facilities

The following research is a regulatory and emissions analysis of collocated sources of air pollution as they relate to the definition of "major, stationary, sources", if their emissions were amalgamated. The emitting sources chosen for this study are seven facilities located in a single, aggregate mining pit, along the Aqua Fria riverbed in Sun City, Arizona. The sources in question consist of Rock Crushing and Screening plants, Hot Mix Asphalt plants, and Concrete Batch plants. Generally, individual facilities with emissions of a criteria air pollutant over 100 tons per year or 70 tons per year for PM10 in the Maricopa County non-attainment area would be required to operate under a different permitting regime than those with emissions less than stated above. In addition, facility's that emit over 25 tons per year or 150 pounds per hour of NOx would trigger Maricopa County Best Available Control Technology (BACT) and would be required to install more stringent pollution controls. However, in order to circumvent the more stringent permitting requirements, some facilities have "collocated" in order to escape having their emissions calculated as single source, while operating as a single, production entity. The results of this study indicate that the sources analyzed do not collectively emit major source levels of emissions; however, they do trigger year and daily BACT for NOx. It was also discovered that lack of grid power contributes to the use of generators, which is the main source of emissions. Therefore, if grid electricity was introduced in outlying areas of Maricopa County, facilities could significantly reduce the use of generator power; thereby, reducing pollutants associated with generator use.

Contributors

Agent

Created

Date Created
2011

149661-Thumbnail Image.png

Maricopa County particulate matter source study

Description

Maricopa County has exceeded the 24 hour National Ambient Air Quality Standard (NAAQS) for Particulate Matter 10 micrometers in diameter or smaller (PM-10) of 150 micrograms per meter cubed (μg/m3) since 1990. Construction and construction related activities have been recognized

Maricopa County has exceeded the 24 hour National Ambient Air Quality Standard (NAAQS) for Particulate Matter 10 micrometers in diameter or smaller (PM-10) of 150 micrograms per meter cubed (μg/m3) since 1990. Construction and construction related activities have been recognized as the highest contributors to high PM-10 levels. An analysis of days exceeding 150 μg/m3 for four of Maricopa County‟s monitors that most frequently exceed this level during the years 2007, 2008, and 2009 has been performed. Noted contributors to PM-10 levels have been identified in the study, including earthmoving permits, stationary source permits, vacant lots, and agriculture on two mile radius maps around each monitor. PM-10 levels and wind speeds for each date exceeding 225 μg/m3 were reviewed to find specific weather or anthropogenic sources for the high PM-10 levels. Weather patterns for days where multiple monitors exceed 150 μg/m3 were reviewed to find correlations between daily weather and high PM-10 levels. It was found that areas with more earthmoving permits had fewer days exceeding 150 μg/m3 than areas with more stationary permits, vacant lots, or agriculture. The Higley and Buckeye monitors showed increases in PM-10 levels when winds came from areas covered by agricultural land. West 43rd Avenue and Durango monitors saw PM-10 rise when the winds came in over large stationary sources, like aggregate plants. A correlation between weather events and PM-10 exceedances was also found on multiple monitors for dates both in 2007, and 2009.

Contributors

Agent

Created

Date Created
2011

149458-Thumbnail Image.png

A Six Sigma-based approach to leadership in energy and environmental design for existing buildings: operations and maintenance

Description

With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility

With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility and the practices of the building occupants. Green building programs help reduce the impact of a facility and bring about several environmental benefits including but not limited to energy conservation, water conservation and material conservation. In addition to various environmental benefits, green building programs can help companies become more efficient. The problem is that organizations are not always successful in their pursuits to achieve sustainability goals. It frequently take years to implement a program, and in many cases the goals for sustainability never come to fruition, when in the mean time resources are wasted, money is spent needlessly and opportunities are lost forever. This thesis addresses how the Six Sigma methodologies used by so many to implement change in their organizations could be applied to the LEED-EB program to help companies achieve sustainability results. A qualitative analysis of the Six Sigma methodologies was performed to determine if and how a LEED-EB program might utilize such methods. The two programs were found to be compatible and several areas for improvements to implementing a LEED-EB program were identified.

Contributors

Agent

Created

Date Created
2010

151339-Thumbnail Image.png

An attitude assessment of Title V environmental leaders toward cap and trade

Description

In 2009, cap and trade was at the forefront of political and environmental discussions. At this time, the American Clean Energy and Security Act passed in the United States House of Representatives. Market based systems are alternatives to traditional regulatory

In 2009, cap and trade was at the forefront of political and environmental discussions. At this time, the American Clean Energy and Security Act passed in the United States House of Representatives. Market based systems are alternatives to traditional regulatory methods such as command and control. This study intended to assess the attitudes of environmental leaders who managed air emissions as a part of their job responsibilities. The attitude of these individuals would have influenced their acceptance of this method as a program to reduce environmental pollution and improve air quality. The purpose of this study was to evaluate the attitudes of South Carolinian Title V environmental leaders toward cap and trade. Additionally, the study intended to determine if experience impacted the attitudes of survey respondents. Lastly, the study determined if environmental leaders found current methods such as command and control effective in air pollution regulation. The survey used the Likert Method of Summated Ratings. Environmental leaders reviewed attitudinal statements about the various subjects. The leaders selected an agreement level which determined their attitudes toward the statement. Numerical response ratings evaluated the leader's attitude by experience level. The survey found that respondents had negative attitudes toward cap and trade. The respondents had a positive attitude toward traditional regulatory methods such as command and control. Lastly, the results concluded that environmental experience did not have an impact on the respondents' attitude toward cap and trade. Therefore, it can be concluded that the environmental leaders prefer traditional air pollution regulatory methods in comparison to alternatives such as cap and trade.

Contributors

Agent

Created

Date Created
2012

157581-Thumbnail Image.png

Geochemical analysis of the leachate generated after zero valent metals addition to municipal solid waste

Description

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals,

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.

Contributors

Agent

Created

Date Created
2019