Matching Items (3)
Filtering by

Clear all filters

153074-Thumbnail Image.png
Description
Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation,

Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation, have received increasing attention. More specifically, the damage can be made detectable by mechanochromic polymers, which provide a visible color change upon the scission of covalent bonds under stress. This dissertation focuses on the study of a novel self-sensing framework for identifying early and in-situ damage by employing unique stress-sensing mechanophores. Two types of mechanophores, cyclobutane and cyclooctane, were utilized, and the former formed from cinnamoyl moeities and the latter formed from anthracene upon photodimerization. The effects on the thermal and mechanical properties with the addition of the cyclobutane-based polymers into epoxy matrices were investigated. The emergence of cracks was detected by fluorescent signals at a strain level right after the yield point of the polymer blends, and the fluorescence intensified with the accumulation of strain. Similar to the mechanism of fluorescence emission from the cleavage of cyclobutane, the cyclooctane moiety generated fluorescent emission with a higher quantum yield upon cleavage. The experimental results also demonstrated the success of employing the cyclooctane type mechanophore as a potential force sensor, as the fluorescence intensification was correlated with the strain increase.
ContributorsZou, Jin (Author) / Dai, Lenore L (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Lind, Mary L (Committee member) / Mu, Bin (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
154071-Thumbnail Image.png
Description
Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on the fundamental aspects of synthesis, functionalization, and characteristic properties of multifunctional environmentally responsive microgels derived from poly(N-isopropylacrylamide) (PNIPAm) and other functional co-monomers. In particular, the uptake and release of active chemical species such as rheology modifiers into and from these ionic microgels is demonstrated. Moreover, a facile tunable method for the formation of organic-inorganic composites with Fe3O4 nanoparticles adsorbed and embedded within ionic microgel particles is explored. Additionally, the development of zwitterionic microgels (ZI-MG) is presented. These aqueous ZI-MG dispersions exhibit reversible parabolic swelling as a function of pH and display a minimum hydrodynamic diameter at a tunable isoelectric point (IEP). This study also elucidates the controlled uptake and release of surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the polymer networks are explained in terms of their binding interactions. The latter part of this thesis highlights the versatility of fluorescently labeled microgel particles as stabilizers for IL-water droplets. When the prepared particles form monolayers and equilibrate at the liquid-liquid interface, the colloidal lattice organization may re-order itself depending on the surface charge of these particles. Finally, it is shown that the spontaneously formed and densely packed layers of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species.
ContributorsChen, Haobo (Author) / Dai, Lenore L (Committee member) / Chen, Kangping (Committee member) / Forzani, Erica (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2015
154753-Thumbnail Image.png
Description
The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. Thus, novel damage detection schemes are required that can sense the precursors to damage. Mechanochemistry is the area of research that involves the use of mechanical force to induce

The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. Thus, novel damage detection schemes are required that can sense the precursors to damage. Mechanochemistry is the area of research that involves the use of mechanical force to induce a chemical change, with recent study focusing on directing the mechanical force to embedded mechanophore units for a targeted chemical response. Mechanophores are molecular units that provide a measureable signal in response to an applied force, often in the form of a visible color change or fluorescent emission, and their application to thermoset network polymers has been limited. Following preliminary work on polymer blends of cyclobutane-based mechanophores and epoxy, dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophore particles were synthesized and employed to form stress sensitive particle reinforced epoxy matrix composites.

Under an applied stress, the cyclooctane-rings in the Di-AC particles revert back to their fluorescent anthracene form, which linearly enhances the overall fluorescence of the composite in response to the applied strain. The fluorescent signal further allows for stress sensing in the elastic region of the stress-strain curve, which is considered to be a form of damage precursor detection. This behavior was further analyzed at the molecular scale with corresponding molecular dynamics simulations. Following the successful application of Di-AC to an epoxy matrix, the mechanophore particles were incorporated into a polyurethane matrix to show the universal nature of Di-AC as a stress-sensitive particle filler. Interestingly, in polyurethane Di-AC could successfully detect damage with less applied strain compared to the epoxy system.

While mechanophores of varying chemistries have been covalently incorporated into elastomeric and thermoplastic polymer systems, they have not yet been covalently incorporated a thermoset network polymer. Thus, following the study of mechanophore particles as stress-sensitive fillers, two routes of grafting mechanophore units into an epoxy system to form a self-sensing nanocomposite were explored. These involved the mechanophore precursor and mechanophore, cinnamamide and di-cinnamamide, respectively. With both molecules, the free amine groups can directly bond to epoxy resin to covalently incorporate themselves within the thermoset network to form a self-sensing nanocomposite.
ContributorsNofen, Elizabeth (Author) / Dai, Lenore L (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Emady, Heather (Committee member) / Mu, Bin (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2016