Matching Items (3)

Filtering by

Clear all filters

152376-Thumbnail Image.png

Electric potential and field calculation of HVDC composite insulators by charge simulation method

Description

High Voltage Direct Current (HVDC) technology is being considered for several long distance point-to-point overhead transmission lines, because of their lower losses and higher transmission capability, when compared to AC

High Voltage Direct Current (HVDC) technology is being considered for several long distance point-to-point overhead transmission lines, because of their lower losses and higher transmission capability, when compared to AC systems. Insulators are used to support and isolate the conductors mechanically and electrically. Composite insulators are gaining popularity for both AC and DC lines, for the reasons of light weight and good performance under contaminated conditions. This research illustrates the electric potential and field computation on HVDC composite insulators by using the charge simulation method. The electric field is calculated under both dry and wet conditions. Under dry conditions, the field distributions along the insulators whose voltage levels range from 500 kV to 1200 kV are calculated and compared. The results indicate that the HVDC insulator produces higher electric field, when compared to AC insulator. Under wet conditions, a 500 kV insulator is modeled with discrete water droplets on the surface. In this case, the field distribution is affected by surface resistivity and separations between droplets. The corona effects on insulators are analyzed for both dry and wet conditions. Corona discharge is created, when electric field strength exceeds the threshold value. Corona and grading rings are placed near the end-fittings of the insulators to reduce occurrence of corona. The dimensions of these rings, specifically their radius, tube thickness and projection from end fittings are optimized. This will help the utilities design proper corona and grading rings to reduce the corona phenomena.

Contributors

Agent

Created

Date Created
  • 2013

149514-Thumbnail Image.png

Thermal degradation in composite insulation due to corona discharges

Description

Composite insulators on overhead lines are frequently subjected to corona discharges due to increased electric field intensities under various conditions. These discharges can cause localized heating on the surface and

Composite insulators on overhead lines are frequently subjected to corona discharges due to increased electric field intensities under various conditions. These discharges can cause localized heating on the surface and affect the hydrophobicity of the insulator. A study has been undertaken to quantify and evaluate the thermal degradation that composite insulation is subjected to from corona discharges. This has been conducted primarily at the power frequency (60 Hz) and at the low frequency range (37 kHz). Point to plane corona discharge experiments have been performed in the laboratory at both the frequencies and varying levels of thermal degradation has been observed. The amplitude and the frequency of current spikes have been recorded at different voltage levels. A temperature model based on the amplitude and the frequency of current data has been formulated to calculate the maximum temperature attained due to these discharges. Visual thermal degradation has been found to set in at a low frequency range while there is no visual degradation observed at power frequency even when exposed to discharges for relatively much longer periods of time. However, microscopic experiments have been conducted which revealed degradation on the surface at 60 Hz. It has also been found that temperatures in excess of 300 Celsius have been obtained at 37 kHz. This corroborates the thermo gravimetric analysis data that proves thermal degradation in silicone rubber samples at temperatures greater than 300 Celsius. Using the above model, the maximum temperature rise can be evaluated due to discharges occurring on high voltage insulation. This model has also been used to calculate the temperature rise on medium voltage distribution equipment such as composite bushings and stand-off plugs. The samples were subjected to standard partial discharge tests and the corresponding discharge magnitudes have been recorded. The samples passed the tests and the corresponding temperatures plotted have been found to be within thermal limits of the respective insulation used on the samples. The experimental results concur with the theoretical model. A knowledge of the maximum temperatures attained due to these discharges can help in design of insulation with better thermal properties.

Contributors

Agent

Created

Date Created
  • 2010

149529-Thumbnail Image.png

Performance analysis of composite insulators up to 1200 kV ac using electric field calculations

Description

This research work illustrates the use of software packages based on the concept of nu-merical analysis technique to evaluate the electric field and voltage distribution along composite insulators for system

This research work illustrates the use of software packages based on the concept of nu-merical analysis technique to evaluate the electric field and voltage distribution along composite insulators for system voltages ranging from 138 kV up to 1200 kV ac. A part of the calculations was made using the 3D software package, COULOMB 8.0, based on the concept of Boundary Element Method (BEM). The electric field was calculated under dry and wet conditions. Compo-site insulators experience more electrical stress when compared to porcelain and are also more prone to damage caused by corona activity. The work presented here investigates the effect of corona rings of specific dimensions and bundled conductors on the electric field along composite insulators. Inappropriate placement or dimensions of corona rings could enhance the electric field instead of mitigating it. Corona ring optimization for a 1000 kV composite insulator was per-formed by changing parameters of the ring, such as the diameter of the ring, thickness of the ring tube and the projection of the ring from the high voltage energized end fitting. Grading rings were designed for Ultra High Voltage (UHV) systems that use two units of composite insulators in pa-rallel. The insulation distance, which bears 50% of the total applied voltage, is raised by 61% with the grading ring installed, when compared to the distance without the grading ring. In other words, the electric field and voltage distribution was found to be more linear with the application of grad-ing rings. The second part of this project was carried out using the EPRI designed software EPIC. This is based on the concept of Charge Simulation method (CSM). Comparisons were made be-tween electric field magnitude along composite insulators used for suspension and dead end configuration for system voltages ranging from 138 kV to 500 kV. It was found that the dead end composite insulators experience significantly higher electrical stress when compared to their suspension counterpart. It was also concluded that this difference gets more prominent as the system voltage increases. A comparison made between electric field distribution along composite insulators used in single and double dead end structures suggested that the electric stress experienced by the single dead end composite insulators is relatively higher when compared to double dead end composite insulators.

Contributors

Agent

Created

Date Created
  • 2010