Matching Items (3)
Filtering by

Clear all filters

156216-Thumbnail Image.png
Description
Inverse problems model real world phenomena from data, where the data are often noisy and models contain errors. This leads to instabilities, multiple solution vectors and thus ill-posedness. To solve ill-posed inverse problems, regularization is typically used as a penalty function to induce stability and allow for the incorporation of

Inverse problems model real world phenomena from data, where the data are often noisy and models contain errors. This leads to instabilities, multiple solution vectors and thus ill-posedness. To solve ill-posed inverse problems, regularization is typically used as a penalty function to induce stability and allow for the incorporation of a priori information about the desired solution. In this thesis, high order regularization techniques are developed for image and function reconstruction from noisy or misleading data. Specifically the incorporation of the Polynomial Annihilation operator allows for the accurate exploitation of the sparse representation of each function in the edge domain.

This dissertation tackles three main problems through the development of novel reconstruction techniques: (i) reconstructing one and two dimensional functions from multiple measurement vectors using variance based joint sparsity when a subset of the measurements contain false and/or misleading information, (ii) approximating discontinuous solutions to hyperbolic partial differential equations by enhancing typical solvers with l1 regularization, and (iii) reducing model assumptions in synthetic aperture radar image formation, specifically for the purpose of speckle reduction and phase error correction. While the common thread tying these problems together is the use of high order regularization, the defining characteristics of each of these problems create unique challenges.

Fast and robust numerical algorithms are also developed so that these problems can be solved efficiently without requiring fine tuning of parameters. Indeed, the numerical experiments presented in this dissertation strongly suggest that the new methodology provides more accurate and robust solutions to a variety of ill-posed inverse problems.
ContributorsScarnati, Theresa (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Gardner, Carl (Committee member) / Sanders, Toby (Committee member) / Arizona State University (Publisher)
Created2018
137504-Thumbnail Image.png
Description
The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use of the inverse fast Fourier transform algorithm. By minimizing the error of the PRM approximation at the sampled Fourier modes, the PRM can also be used to improve on initial edge location estimates. Numerical examples show that using the PRM to improve on initial edge location estimates and then taking of the PRM approximation of the integer frequency Fourier coefficients is a viable way to reconstruct the underlying function in one dimension. In particular, the PRM is shown to converge more quickly and to be more robust than current resampling techniques used in MRI, and is particularly amenable to highly irregular sampling patterns.
ContributorsGutierrez, Alexander Jay (Author) / Platte, Rodrigo (Thesis director) / Gelb, Anne (Committee member) / Viswanathan, Adityavikram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
154381-Thumbnail Image.png
Description
High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI

High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are used to address three problems: reconstructing piecewise smooth functions from sparse and and noisy Fourier data, recovering edge locations in piecewise smooth functions from sparse and noisy Fourier data, and reducing time-stepping constraints when numerically solving certain time-dependent hyperbolic partial differential equations.
ContributorsDenker, Dennis (Author) / Gelb, Anne (Thesis advisor) / Archibald, Richard (Committee member) / Armbruster, Dieter (Committee member) / Boggess, Albert (Committee member) / Platte, Rodrigo (Committee member) / Saders, Toby (Committee member) / Arizona State University (Publisher)
Created2016