Matching Items (2)
Filtering by

Clear all filters

157668-Thumbnail Image.png
Description
This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct of frame of reference. The first paper is a theory paper that introduces the mental actions involved in reasoning with frames of reference. The concept of frames of reference, though commonly used in mathematics and physics, is not described cognitively in any literature. The paper offers a theoretical model of mental actions involved in conceptualizing a frame of reference. Additionally, it posits mental actions that are necessary for a student to reason with multiple frames of reference. It also extends the theory of quantitative reasoning with the construct of a ‘framed quantity’. The second paper investigates how two introductory calculus students who participated in teaching experiments reasoned about changes (variations). The data was analyzed to see to what extent each student conceptualized the variations within a conceptualized frame of reference as described in the first paper. The study found that the extent to which each student conceptualized, coordinated, and combined reference frames significantly affected his ability to reason productively about variations and to make sense of his own answers. The paper ends by analyzing 123 calculus students’ written responses to one of the tasks to build hypotheses about how calculus students reason about variations within frames of reference. The third paper reports how U.S. and Korean secondary mathematics teachers reason with frame of reference on open-response items. An assessment with five frame of reference tasks was given to 539 teachers in the US and Korea, and the responses were coded with rubrics intended to categorize responses by the extent to which they demonstrated conceptualized and coordinated frames of reference. The results show that the theory in the first study is useful in analyzing teachers’ reasoning with frames of reference, and that the items and rubrics function as useful tools in investigating teachers’ meanings for quantities within a frame of reference.
ContributorsJoshua, Surani Ashanthi (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Roh, Kyeong Hah (Committee member) / Middleton, James (Committee member) / Culbertson, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157684-Thumbnail Image.png
Description
This dissertation reports three studies of the relationships between meanings teachers hold and meanings their students construct.

The first paper reports meanings held by U.S. and Korean secondary mathematics teachers for teaching function notation. This study focuses on what teachers in U.S. and Korean are revealing their thinking from their

This dissertation reports three studies of the relationships between meanings teachers hold and meanings their students construct.

The first paper reports meanings held by U.S. and Korean secondary mathematics teachers for teaching function notation. This study focuses on what teachers in U.S. and Korean are revealing their thinking from their written responses to the MMTsm (Mathematical Meanings for Teaching secondary mathematics) items, with particular attention to how productive those meanings would be if conveyed to students in a classroom setting. This paper then discusses how the MMTsm serves as a diagnostic instrument by sharing a teacher’s story. The data indicates that many teachers name rules instead of constructing representations of functions through function notation.

The second paper reports the conveyance of meaning with eight Korean teachers who took the MMTsm. The data that I gathered was their responses to the MMTsm, what they said and did in the classroom lessons I observed, pre- and post-lesson interviews with them and their students. This paper focuses on the relationships between teachers’ mathematical meanings and their instructional actions as well as the relationships between teachers’ instructional actions and meanings that their students construct. The data suggests that holding productive meanings is a necessary condition to convey productive meanings to students, but not a sufficient condition.

The third paper investigates the conveyance of meaning with one U.S. teacher. This study explores how a teacher’s image of student thinking influenced her instructional decisions and meanings she conveyed to students. I observed 15 lessons taught by a calculus teacher and interviewed the teacher and her students at multiple points. The results suggest that teachers must think about how students might understand their instructional actions in order to better convey what they intend to their students.

The studies show a breakdown in the conveyance of meaning from teacher to student when the teacher has no image of how students might understand his or her statements and actions. This suggests that it is crucial to help teachers improve what they are capable of conveying to students and their images of what they hope to convey to future students.
ContributorsYoon, Hyunkyoung (Author) / Thompson, Patrick W (Thesis advisor) / Roh, Kyeong Hah (Committee member) / Zandieh, Michelle (Committee member) / Lee, Mi Yeon (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2019