Matching Items (3)
Filtering by

Clear all filters

151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
152160-Thumbnail Image.png
Description
A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an

A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an effective treatment option for cerebral aneurysms that is far less invasive than conventional surgical options. Nonetheless, the rate of successful treatment is as low as 50% for certain types of aneurysms. Treatment success has been correlated with favorable post-treatment hemodynamics. However, current understanding of the effects of endovascular treatment parameters on post-treatment hemodynamics is limited. This limitation is due in part to current challenges in in vivo flow measurement techniques. Improved understanding of post-treatment hemodynamics can lead to more effective treatments. However, the effects of treatment on hemodynamics may be patient-specific and thus, accurate tools that can predict hemodynamics on a case by case basis are also required for improving outcomes.Accordingly, the main objectives of this work were 1) to develop computational tools for predicting post-treatment hemodynamics and 2) to build a foundation of understanding on the effects of controllable treatment parameters on cerebral aneurysm hemodynamics. Experimental flow measurement techniques, using particle image velocimetry, were first developed for acquiring flow data in cerebral aneurysm models treated with an endovascular device. The experimental data were then used to guide the development of novel computational tools, which consider the physical properties, design specifications, and deployment mechanics of endovascular devices to simulate post-treatment hemodynamics. The effects of different endovascular treatment parameters on cerebral aneurysm hemodynamics were then characterized under controlled conditions. Lastly, application of the computational tools for interventional planning was demonstrated through the evaluation of two patient cases.
ContributorsBabiker, M. Haithem (Author) / Frakes, David H (Thesis advisor) / Adrian, Ronald (Committee member) / Caplan, Michael (Committee member) / Chong, Brian (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2013
151024-Thumbnail Image.png
Description
Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This thesis proposes a novel spatio-temporal, non-linear video deinterlacing technique that adaptively chooses between the results from one dimensional control grid interpolation (1DCGI), vertical temporal filter (VTF) and temporal line

Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This thesis proposes a novel spatio-temporal, non-linear video deinterlacing technique that adaptively chooses between the results from one dimensional control grid interpolation (1DCGI), vertical temporal filter (VTF) and temporal line averaging (LA). The proposed method performs better than several popular benchmarking methods in terms of both visual quality and peak signal to noise ratio (PSNR). The algorithm performs better than existing approaches like edge-based line averaging (ELA) and spatio-temporal edge-based median filtering (STELA) on fine moving edges and semi-static regions of videos, which are recognized as particularly challenging deinterlacing cases. The proposed approach also performs better than the state-of-the-art content adaptive vertical temporal filtering (CAVTF) approach. Along with the main approach several spin-off approaches are also proposed each with its own characteristics.
ContributorsVenkatesan, Ragav (Author) / Frakes, David H (Thesis advisor) / Li, Baoxin (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2012